机器学习数学基础:42.AMOS 结构方程模型(SEM)分析的系统流程

该流程图完整呈现了 AMOS 结构方程模型(SEM)分析的系统流程,具体步骤及内涵如下:

1. 模型设定

基于理论基础或研究假设,构建结构方程模型的初始框架,明确潜变量与显变量的关系、测量模型(因子结构)及结构模型(变量间路径),是后续分析的基础。

2. 模型识别

通过统计方法检验模型是否具备可识别性,即判断模型参数是否存在唯一解。若模型不可识别(如自由度不足),需调整模型设定(如减少参数、简化结构),直至满足识别条件。

3. 选择测量工具、收集资料

确定数据收集工具(如量表、问卷、实验仪器等),确保测量工具信效度达标;随后开展数据收集,获取研究所需样本数据,为模型分析提供实证支持。

4. 模型估计

将收集的数据导入 AMOS,运用统计估计方法(如极大似然估计)计算模型参数(路径系数、方差、协方差等),生成初始模型的估计结果。

5. 模型评估

通过拟合指标(如 RMSEA、CFI、TLI、χ²/df 等)评估模型与数据的拟合程度:

  • 拟合良好:进入结果解读环节;
  • 拟合不佳:需进行模型修正,分析修正指标(如 MI 值),寻找模型调整方向。

6. 模型修正

根据评估结果,对拟合不佳的模型进行调整(如添加路径、修正测量模型),修正后重新回到“模型估计”环节,迭代分析直至模型拟合达标。

7. 解读估计结果

深入分析模型参数估计值,包括路径系数的显著性(判断变量间关系是否成立)、因子载荷(衡量显变量对潜变量的解释力)、残差方差等,从理论和实践层面解释变量关系的意义。

8. 结果(论)报告

系统整理模型拟合指标、参数估计结果、假设检验结论等,以学术规范撰写研究报告,呈现研究发现与理论贡献。

9. 模型交叉验证

通过交叉验证(如拆分样本、更换数据子集)检验模型的稳健性,确保模型在不同数据样本中仍保持良好拟合与解释力,验证研究结果的可靠性与泛化能力。

结构方程模型(Structural Equation Modeling, SEM)是一种多变量分析方法,用于探索观测变量之间的关系和潜在变量的测量模型。以下是进行结构方程模型的一般步骤: 1. 确定研究目的和研究问题:确定你想要研究的变量和它们之间的关系。 2. 收集数据:收集数据以用于分析,包括观测变量和潜在变量的测量。 3. 构建测量模型:通过确认测量模型来评估观测变量对潜在变量的测量效果。这涉及到指定测量模型的参数和确定测量模型是否符合实际数据。 4. 构建结构模型:建立潜在变量之间的关系模型。这涉及到指定结构模型的参数和确定结构模型是否与实际数据相符。 5. 估计模型参数:使用适当的统计方法,如最小二乘法(Least Squares Estimation)或最大似然法(Maximum Likelihood Estimation),对模型进行参数估计。 6. 模型拟合度检验:使用拟合度指标(如卡方检验、RMSEA、CFI等)来评估模型与实际数据的拟合程度。如果模型拟合度不好,需要对模型进行修改。 7. 进行模型修正:在模型拟合度不好的情况下,根据实际数据和统计指标,对模型进行修改和修正,以提高模型拟合度。 8. 进行解释和推理:根据模型参数估计结果,进行解释和推理,回答研究问题,并提出相关建议。 请注意,这只是结构方程模型的一般步骤,具体的步骤和方法可能会因研究问题和数据类型而有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值