一、调节变量
温忠麟等(2005)指出:“如果变量Y与变量X的关系是变量M的函数,即Y与X的关系受到第三个变量M的影响,则称M为调节变量,调节变量能够影响因变量和自变量之间关系的方向(正或负)和强弱”。
当前大部分学者采用层级回归分析,或者是借助PROCESS插件,对调节效应进行检验。这里我们和大家分享基于SEM(Structural Equation Model,结构方程模型)的调节效应检验。
目前所见有调节的中介效应检验方法都是基于显变量的多元线性回归分析。基于多元线性回归的中介和调节效应分析的最大不足时假设所有变量的测量都不存在测量误差,这会造成中介和调节效应的低估,而建立结构方程模型进行有调节的中介效应分析的最大优势就在于设置潜变量,有效控制测量误差,准确估计中介和调节效应值,是比较好的方法。
值得注意的是,基于SEM的有调节的中介效应分析虽然优势明显,但实际应用并不多。有人对2010-2011年发表在4本顶级管理学期刊上的78篇同时包含中介和调节变量的文章进行了文献分析,只有5%的文章是用SEM进行统计分析。一个可能的原因是,目前有调节的中介SEM分析需要使用乘积指标法(product-indicator approaches),这类方法需要用到乘积指标(product-indicator)作为潜调节(交互)项的指标。乘积指标法存在两大不足。第一,乘积指标的生成比较复杂,存在多种指标生成策略,一般应用研究者不易掌握,且不同的乘积指标生成策略可能会产生不同的参数估计结果,给应用研究者带来理解和解释的困惑。第二,乘积项是非正态分布的,使得基于正态分布假设的参数估计结果可能产生偏差,存在稳健性的问题。
前面提到的两种统计方法已经在调节效应检验(一)与调节效应检验(二)两篇文章中进行介绍,这里我们介绍如何运用AMOS软件进行基于结构方程模型的调节效应检验。
二、调节效应检验步骤:准备工作
基于结构方程模型的调节效应检验需要用到SPSS与AMOS两个软件,包括题项打包、数据标准化与乘积指标生成三个步骤,下面我们逐一进行介绍。
1. 题项打包
在进行因子打包的步骤介绍前,我们首先需要了解三个问题:“什么是题项打包”,“为什么要进行题项打包”以及“打包成几个指标最合适”
① 什么是题项打包
题目打包法(item parceling,也译为题目组合法或题目小组法)是将同一量表的两个或以上题目打包成一个新指标,用合成分数(总分或均值)作为新指标的分数进行分析。例如,一个量表原有9个题目,可将3个题目作为一个题目小组计算合成分数(小组内题目数也可以不相等),形成3个新指标,打包法直接用3个新指标进行分析。
② 为什么要进行题项打包
为什么我们需要进行题项打包?一方面是打包法具有一定的优势:<