1.1 时间和空间

1.1.1 时间
时间(Time)是物质的永恒运动、变化的持续性、顺序性的表现,包含时刻和时段两个概念。时间是人类用以描述物质运动过程或事件发生过程的一个参数,确定时间,是靠不受外界影响的物质周期变化的规律。以地球自转为基础的时间计量系统称为世界时系统。时、日、月、年、世纪的时间计量属天文学中的历法范畴。时间是物理学中的七个基本物理量之一,符号为t。在国际单位制(SI)中,时间的基本单位是秒,符号为s。
绝对时间观(Absolute time view)指的是时间的存在是绝对的。比如说一个观测者带了几个秒表,在力学结构相同的情况下,秒表运动运动指示的1个时间间隔对应绝对时间中的1秒,测量者用这些秒表测量的时间会完全相同,牛顿在他的《自然哲学的数学原理》中有句概括的解释:“绝对的、纯粹的数学的时间,就其本性来说,均匀地流逝而与任何外在的情况无关。”
我们在后续的学习中还会接触到相对时空观,这里就不再赘述。
1.1.2 空间
空间(Space)是运动的存在和表现形式。运动有两种具体的表现形式:行为和存在。行为是相对彰显的运动,存在是相对静止的运动。具体事物只有在一定的空间里才能存在。一滴水、一粒沙、一个原子、一线光都存在于一定的空间里,都有一定的空间位置作为表现形式。一切具体的行为、现象、事情都在具体空间里发生、发展和结束,都以具体的空间规定作为表现形式。空间不仅是具体事物存在的表现形式,而且也是抽象事物存在的表现形式。抽象事物存在于具体事物之中就像上帝存在于天堂之中一样。存在于具体事物之外的抽象事物同存在于天堂之外的上帝一样都是不可思议的。空间是人们从具体事物中分解和抽象出来的认识对象。运动是具体事物的表现形式,是具体事物的组成部分,是人们从具体事物中分解和抽象出来的认识对象。空间是运动的组成部分,是运动的表现形式,是人们从行为和存在中分解和抽象出来的认识对象。所以可以十分准确地说,空间是人们对具体事物进行多次分解和抽象,从具体事物中分解和抽象出来的认识对象。空间是绝对抽象事物和相对抽象事物、元本体和元实体组成的对立统一体。
绝对空间观(Absolute space view)绝对时间观类似,牛顿在他的《自然哲学的数学原理》中也有句概括的解释:“绝对空间,就其本性来说,与任何外在的情况无关,始终保持着相似和不变。”
1.1.3 参考系
参考系(Reference system)与参考体相固连的整个延伸空间。参考体是用来确定物体的位置和描述它的机械运动而选作标准的另一个物体。为了用数值表达一个物体的位置,可在参考体上设置坐标系,称为参考坐标系。参考系和参考坐标系都可以任意选择,但同一个运动在不同参考系中的表现形式是不同的。通常按照问题的实际情况选取适当的参考体。例如,当火箭从地球表面起飞时,宜用地球做参考体;当航天器成为绕太阳运动的人造行星时,宜用太阳做参考体。由此可见,一切力学现象只能相对于所选定的参考系进行观察,描述和研究。在同一参考系上可有不同的参考坐标系,它们对同一个物体的位置坐标的值虽然不同,但有确定的几何关系联系着。为了能对物体运动作定量描述,常直接引用参考坐标系。
1.2 直线运动
书接上文,有了空间和时间,我们可以来描述运动,先从最简单的直线运动入手。
1.2.1 运动学的基本物理量
位移(displacement)质点相对于某一参考系运动时,对这个参考系进行设定,我们假设位置 随时间t的变化函数为
,此方程称为运动方程。在 t 时刻到
时间内,质点的位置由
到
的位置变化称为位移。
可以写成无穷小的叠加:
路程(route)在 时间内,质点经历的路线长度,
可以发现 ;
平均速度 ,当
时,为瞬时速度,简称速度
(1.2.1)
加速度(acceleration)速度随时间的导数,反映了速度变化的快慢 (1.2.2)
1.2.2 几种常用的关系式
通过式1.2.1和1.2.2的微分形式可以写出它们的积分形式,如下:
当我们假设是匀加速直线运动时,为一常数,设
时,质点速度为
,由1.2.3和1.2.4可以得如下关系式:
同时,通过链式法则代入1.2.2中可以得:
对于变加速直线运动较为复杂,我们在后面的章节将会介绍。
1.3 平面曲线运动
1.3.1 直角坐标系的分解
在直角坐标系中我们将质点的位矢分解,
分别看成两个方向的直线运动,只是它们的方向矢量不同(分别为i和j),其余量与之类似
1.3.2 自然坐标系分解
在直角坐标系分解中,我们考虑的是将坐标系固定,不考虑质点运动得到的框架,现在,我们考虑物体自生运动所产生的自然坐标系,并对其进行分解。
我们假设质点变旋转变直线运动,叠合到一起就是曲线运动,我们令其在 时间内转动的角度为
,和直线运动类似,其所对应的角速度为
,角加速度为
。除了其转动的角度,理应还有一个转过的弧长
,这个同样构成类似的速度以及加速度。之后我们回过头来定义,将 和
和
给与一定的方向(顺逆时针),于是质点运动的位矢、速度、加速度都可以由这两个共同决定,其中
除了这种方式,我们还可以更简化一点(上述条件不具有普适性),即将运动分解为径向和切向,类似可得
1.3.3 极坐标系分解

在这种分解下,我们结合了第一种和第二种的分解方法,我们考虑坐标系,即 ,但同时,又将
转换成
极坐标系来进行表示。根据图1.3.1,会有如下关系式:
利用这个变换及基本数学代换,可以得到速度及加速度的表达式:
这几个式子尤为重要,需勤加记忆。
在观察上面两个速度公式时,可以利用关系代换将 或
替换,最终可以得到一个轨道方程:
这个方程可以用来求解一些轨道问题。
1.4 空间曲线运动
图1.4.1 质点在空间中运动
和前面的类似的分析方法,只是再加一个纬度,它的直角坐标及自然坐标的分析较为简单,在这里就不再赘述,至于极坐标系我们将在理论力学中详细的分析,这里也不再提及。