✨个人主页欢迎您的访问 ✨期待您的三连 ✨
✨个人主页欢迎您的访问 ✨期待您的三连 ✨
✨个人主页欢迎您的访问 ✨期待您的三连✨
车道线检测是计算机视觉领域的一个重要研究方向,尤其在自动驾驶和高级驾驶辅助系统(ADAS)中具有广泛应用。本文将深入探讨当前主流的车道线检测算法,选择性能最好的算法进行详细介绍,并涵盖数据集、代码实现、优秀论文、具体应用以及未来的研究方向和改进方向。
1. 当前相关的算法✨✨
车道线检测算法可以分为传统方法和深度学习方法两大类。以下是当前主流的一些算法:
1.1 传统方法
-
基于边缘检测和霍夫变换:通过Canny边缘检测和霍夫变换检测直线,适用于简单场景。
-
基于滑动窗口的拟合方法:使用滑动窗口搜索车道线像素,并通过多项式拟合车道线。
1.2 深度学习方法
-
LaneNet:基于实例分割的车道线检测网络,能够区分不同的车道线实例。
-
SCNN(Spatial CNN):通过空间卷积网络捕捉车道线的空间关系,适用于复杂场景。
-
PolyLaneNet:基于多项式回归的车道线检测方法,直接输出车道线的参数。
-
Ultra Fast Structure-aware Deep Lane Detection:通过结构感知的深度学习方法实现高效的车道线检测。