计算机视觉算法实战——行为识别:从原理到应用

  ✨个人主页欢迎您的访问 ✨期待您的三连 ✨

 ✨个人主页欢迎您的访问 ✨期待您的三连 ✨

  ✨个人主页欢迎您的访问 ✨期待您的三连✨

​​​

​​​​​​​​​

1. 行为识别领域概述

行为识别(Action Recognition)是计算机视觉中极具挑战性的核心任务,旨在通过分析视频序列自动识别和理解人类行为动作。这一技术在人机交互、智能监控、体育分析、医疗监护等领域具有广泛应用前景,是人工智能理解物理世界的重要桥梁。

1.1 技术挑战与特点

行为识别面临独特的技术挑战:

  • 时序建模:需要捕捉动作的时序演化特征

  • 多尺度分析:动作可能持续不同时间长度(从几分之一秒到几分钟)

  • 上下文依赖:相同动作在不同场景下可能有不同含义

  • 视角变化:同一动作从不同视角观察差异显著

  • 遮挡问题:人体可能被其他物体或自身部分遮挡

1.2 主要技术路线

根据处理方式不同,主流方法可分为:

  • 基于手工特征的方法(如HOG、SIFT、STIP等)

  • 基于深度学习的方法(2D CNN、3D CNN、双流网络等)

  • 基于骨架数据的方法(GCN、ST-GCN等)

  • 多模态融合方法(结合RGB、光流、深度等信息)

2. 当前主流行为识别算法

2.1 2D CNN时序建模方法

代表模型:TSN(Temporal Segment Networks)

  • 将视频分成多个片段

  • 每个片段随机采样一帧

  • 使用2D CNN提取特征后融合

  • 优点:计算效率高

  • 缺点:时序建模能力有限

2.2 3D CNN方法

代表模型

  • C3D:使用3×3×3卷积核的简单3D CNN

  • I3D:将ImageNet预训练的2D卷积核"膨胀"到3D

  • SlowFast:双路径处理时空信息

3D CNN特点:

  • 直接处理时空立方体

  • 计算量大幅增加

  • 需要大规模视频数据预训练

2.3 双流网络及其变体

经典双流网络

  • 空间流:处理RGB帧

  • 时间流:处理光流帧

  • 后期融合两流预测结果

改进方向

  • 光流计算替代(TVNet等)

  • 更高效的融合策略

  • 多模态扩展

2.4 基于骨架的GCN方法

代表模型

  • ST-GCN:时空图卷积网络

  • 2s-AGCN:自适应图卷积

  • MS-G3D:多尺度图卷积

优点:

  • 对背景变化鲁棒

  • 计算量相对较小

  • 数据隐私性好(无需原始视频)

2.5 Transformer架构

视频Transformer模型

  • TimeSformer:将ViT扩展到视频领域

  • ViViT:纯Transformer视频架构

  • Motionformer:专注运动建模

特点:

  • 强大的长程依赖建模能力

  • 数据效率较低

  • 计算复杂度高

2.6 算法性能对比

方法类型代表模型优点缺点适用场景
2D CNNTSN计算高效时序建模弱实时应用
3D CNNSlowFast时空联合建模计算量大高精度场景
双流网络TSN+光流运动信息明确光流计算耗时中小规模数据集
骨架GCNMS-G3D背景鲁棒性强依赖姿态估计隐私敏感场景
TransformerTimeSformer长序列建模能力强需要大量数据大规模视频理解

3. 领先算法详解:MoCo+SlowFast

在众多行为识别算法中,MoCo+SlowFast组合在多个基准测试中表现出色,特别是在小样本学习和迁移学习场景下。

3.1 SlowFast网络原理

SlowFast网络采用双路径架构:

  • Slow路径(低帧率):

    • 捕获空间语义信息

    • 帧率通常为原始视频的1/16

    • 通道数较多(更多容量)

  • Fast路径(高帧率):

    • 捕捉运动细节

    • 帧率通常为原始视频的1/4

    • 通道数较少(计算高效)

关键设计

  • 横向连接:融合两路径特征

  • 时间维度下采样:保持计算效率

  • 非对称信息处理:适应不同时序粒度

3.2 MoCo自监督预训练

MoCo(Momentum Contrast)为SlowFast提供强大的预训练权重:

  1. 对比学习框架

    • 构建动态字典

    • 正负样本对比

    • 动量更新编码器

  2. 视频领域适配

    • 时空数据增强

    • 跨视频负样本

    • 时序一致性约束

3.3 性能优势分析

在Kinetics-400数据集上的表现:

  • Top-1准确率:79.8%

  • 计算效率:比纯3D CNN高3倍

  • 小样本适应:仅需10%标注数据即可达到70%+准确率

# SlowFast网络核心代码示例
import torch
import torch.nn as nn

class SlowFast(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        # Slow路径
        self.s_conv1 = nn.Conv3d(3, 64, kernel_size=(1,7,7), stride=(1,2,2), padding=(0,3,3))
        self.s_res1 = ResBlock3D(64, 256, temporal_stride=1)
        self.s_res2 = ResBlock3D(256, 512, temporal_stride=2)
        
        # Fast路径
        self.f_conv1 = nn.Conv3d(3, 8, kernel_size=(5,7,7), stride=(1,2,2), padding=(2,3,3))
        self.f_res1 = ResBlock3D(8, 32, temporal_stride=1)
        self.f_res2 = ResBlock3D(32, 64, temporal_stride=2)
        
        # 横向连接与分类头
        self.lateral = LateralConnections()
        self.head = nn.Linear(2048, num_classes)
    
    def forward(self, x):
        # 输入x应为元组(slow_path, fast_path)
        s_x, f_x = x
        
        # Slow路径
        s_x = self.s_conv1(s_x)
        s_x = self.s_res1(s_x)
        s_x = self.s_res2(s_x)
        
        # Fast路径
        f_x = self.f_conv1(f_x)
        f_x = self.f_res1(f_x)
        f_x = self.f_res2(f_x)
        
        # 特征融合与分类
        fused = self.lateral(s_x, f_x)
        return self.head(fused)

class ResBlock3D(nn.Module):
    # 3D残差块实现
    pass

class LateralConnections(nn.Module):
    # 横向连接实现
    pass

4. 常用数据集及获取方式

4.1 主流行为识别数据集

  1. Kinetics系列

  2. Something-Something

  3. UCF101

  4. HMDB51

  5. NTU RGB+D

    • 60类,56,880样本

    • 特点:多视角骨架数据

    • 下载:ROSE Lab

4.2 数据预处理示例

import decord
import torchvision.transforms as T

class VideoDataset(torch.utils.data.Dataset):
    def __init__(self, video_paths, labels, num_frames=32, slow_factor=4):
        self.video_paths = video_paths
        self.labels = labels
        self.num_frames = num_frames
        self.slow_factor = slow_factor
        self.transform = T.Compose([
            T.Resize(256),
            T.CenterCrop(224),
            T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
    
    def __getitem__(self, idx):
        # 使用decord高效读取视频
        vr = decord.VideoReader(self.video_paths[idx])
        total_frames = len(vr)
        
        # Fast路径采样
        fast_indices = self._sample_frames(total_frames, self.num_frames)
        fast_frames = vr.get_batch(fast_indices).asnumpy()
        fast_frames = torch.from_numpy(fast_frames).permute(0, 3, 1, 2).float() / 255.0
        
        # Slow路径采样
        slow_indices = fast_indices[::self.slow_factor]
        slow_frames = vr.get_batch(slow_indices).asnumpy()
        slow_frames = torch.from_numpy(slow_frames).permute(0, 3, 1, 2).float() / 255.0
        
        # 应用变换
        fast_frames = torch.stack([self.transform(f) for f in fast_frames])
        slow_frames = torch.stack([self.transform(f) for f in slow_frames])
        
        return (slow_frames, fast_frames), self.labels[idx]
    
    def _sample_frames(self, total_frames, target_frames):
        # 等间隔采样逻辑
        step = max(1, (total_frames - 1) // (target_frames - 1))
        indices = [min(i * step, total_frames - 1) for i in range(target_frames)]
        return indices

5. 完整代码实现:基于SlowFast的行为识别

以下是一个完整的SlowFast实现,包含数据加载、模型定义和训练流程:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.models.video import r3d_18
import numpy as np

# 数据加载增强
class VideoTransform:
    def __init__(self, mode='train'):
        self.mode = mode
        if mode == 'train':
            self.transform = T.Compose([
                T.RandomResizedCrop(224),
                T.RandomHorizontalFlip(),
                T.ColorJitter(0.2, 0.2, 0.2),
                T.Normalize(mean=[0.43216, 0.394666, 0.37645], 
                           std=[0.22803, 0.22145, 0.216989])
            ])
        else:
            self.transform = T.Compose([
                T.Resize(256),
                T.CenterCrop(224),
                T.Normalize(mean=[0.43216, 0.394666, 0.37645], 
                           std=[0.22803, 0.22145, 0.216989])
            ])
    
    def __call__(self, x):
        return self.transform(x)

# SlowFast模型实现
class SlowFast(nn.Module):
    def __init__(self, num_classes, slow_factor=4, beta=1/8):
        super().__init__()
        self.slow_factor = slow_factor
        self.beta = beta  # Fast路径通道缩减因子
        
        # Slow路径
        self.s_conv1 = nn.Conv3d(3, 64, kernel_size=(1,7,7), 
                                stride=(1,2,2), padding=(0,3,3))
        self.s_maxpool = nn.MaxPool3d(kernel_size=(1,3,3), 
                                    stride=(1,2,2), padding=(0,1,1))
        self.s_res1 = self._make_layer(64, 256, stride=1)
        self.s_res2 = self._make_layer(256, 512, stride=2)
        self.s_res3 = self._make_layer(512, 1024, stride=2)
        self.s_res4 = self._make_layer(1024, 2048, stride=2)
        
        # Fast路径
        fast_channels = int(64 * beta)
        self.f_conv1 = nn.Conv3d(3, fast_channels, kernel_size=(5,7,7),
                                stride=(1,2,2), padding=(2,3,3))
        self.f_maxpool = nn.MaxPool3d(kernel_size=(1,3,3),
                                    stride=(1,2,2), padding=(0,1,1))
        self.f_res1 = self._make_layer(fast_channels, int(256*beta), stride=1)
        self.f_res2 = self._make_layer(int(256*beta), int(512*beta), stride=2)
        self.f_res3 = self._make_layer(int(512*beta), int(1024*beta), stride=2)
        self.f_res4 = self._make_layer(int(1024*beta), int(2048*beta), stride=2)
        
        # 横向连接
        self.lateral_p1 = LateralConnection(int(256*beta), 256)
        self.lateral_p2 = LateralConnection(int(512*beta), 512)
        self.lateral_p3 = LateralConnection(int(1024*beta), 1024)
        
        # 分类头
        self.avgpool = nn.AdaptiveAvgPool3d((1,1,1))
        self.dropout = nn.Dropout(0.5)
        self.fc = nn.Linear(2048 + int(2048*beta), num_classes)
    
    def _make_layer(self, in_channels, out_channels, stride):
        return nn.Sequential(
            Bottleneck3D(in_channels, out_channels, stride),
            Bottleneck3D(out_channels, out_channels, 1)
        )
    
    def forward(self, x):
        # 输入应为(slow_frames, fast_frames)元组
        s_x, f_x = x
        
        # Slow路径前向
        s_x = self.s_conv1(s_x)
        s_x = self.s_maxpool(s_x)
        s_x = self.s_res1(s_x)  # 输出形状: B,256,T/8,H/4,W/4
        s_x = self.s_res2(s_x)  # B,512,T/16,H/8,W/8
        s_x = self.lateral_p1(s_x, self.f_res2(f_x))  # 第一次横向连接
        
        s_x = self.s_res3(s_x)  # B,1024,T/32,H/16,W/16
        s_x = self.lateral_p2(s_x, self.f_res3(f_x))
        
        s_x = self.s_res4(s_x)  # B,2048,T/64,H/32,W/32
        s_x = self.lateral_p3(s_x, self.f_res4(f_x))
        
        # Fast路径前向
        f_x = self.f_conv1(f_x)
        f_x = self.f_maxpool(f_x)
        f_x = self.f_res1(f_x)
        f_x = self.f_res2(f_x)
        f_x = self.f_res3(f_x)
        f_x = self.f_res4(f_x)
        
        # 特征聚合
        s_x = self.avgpool(s_x).flatten(1)
        f_x = self.avgpool(f_x).flatten(1)
        features = torch.cat([s_x, f_x], dim=1)
        
        # 分类
        return self.fc(self.dropout(features))

class LateralConnection(nn.Module):
    """Slow和Fast路径间的横向连接"""
    def __init__(self, fast_channels, slow_channels):
        super().__init__()
        self.conv = nn.Conv3d(fast_channels, slow_channels, 
                             kernel_size=(5,1,1), stride=(1,1,1),
                             padding=(2,0,0), bias=False)
        self.bn = nn.BatchNorm3d(slow_channels)
        self.relu = nn.ReLU(inplace=True)
    
    def forward(self, slow_x, fast_x):
        # 调整Fast路径特征的时间维度
        fast_x = self.conv(fast_x)
        fast_x = self.bn(fast_x)
        fast_x = self.relu(fast_x)
        
        # 时间维度对齐(通过插值)
        if slow_x.shape[2] != fast_x.shape[2]:
            scale_factor = slow_x.shape[2] / fast_x.shape[2]
            fast_x = F.interpolate(fast_x, scale_factor=(scale_factor,1,1),
                                  mode='trilinear')
        
        return slow_x + fast_x

class Bottleneck3D(nn.Module):
    """3D残差瓶颈块"""
    expansion = 4
    
    def __init__(self, inplanes, planes, stride=1):
        super().__init__()
        self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm3d(planes)
        
        self.conv2 = nn.Conv3d(planes, planes, kernel_size=3, stride=stride,
                              padding=1, bias=False)
        self.bn2 = nn.BatchNorm3d(planes)
        
        self.conv3 = nn.Conv3d(planes, planes * self.expansion, 
                              kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm3d(planes * self.expansion)
        
        self.relu = nn.ReLU(inplace=True)
        self.downsample = None
        if stride != 1 or inplanes != planes * self.expansion:
            self.downsample = nn.Sequential(
                nn.Conv3d(inplanes, planes * self.expansion,
                         kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm3d(planes * self.expansion)
            )
    
    def forward(self, x):
        identity = x
        
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        
        out = self.conv3(out)
        out = self.bn3(out)
        
        if self.downsample is not None:
            identity = self.downsample(x)
        
        out += identity
        return self.relu(out)

# 训练流程
def train_model(model, train_loader, val_loader, epochs, lr=1e-3):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=1e-4)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3)
    
    best_acc = 0.0
    for epoch in range(epochs):
        model.train()
        running_loss = 0.0
        correct = 0
        total = 0
        
        for inputs, labels in train_loader:
            slow_inputs, fast_inputs = inputs
            slow_inputs = slow_inputs.to(device)
            fast_inputs = fast_inputs.to(device)
            labels = labels.to(device)
            
            optimizer.zero_grad()
            outputs = model((slow_inputs, fast_inputs))
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            
            running_loss += loss.item()
            _, predicted = outputs.max(1)
            total += labels.size(0)
            correct += predicted.eq(labels).sum().item()
        
        train_loss = running_loss / len(train_loader)
        train_acc = 100. * correct / total
        
        # 验证阶段
        val_acc, val_loss = evaluate(model, val_loader, criterion, device)
        scheduler.step(val_loss)
        
        print(f"Epoch {epoch+1}/{epochs} - "
              f"Train Loss: {train_loss:.4f}, Acc: {train_acc:.2f}% | "
              f"Val Loss: {val_loss:.4f}, Acc: {val_acc:.2f}%")
        
        if val_acc > best_acc:
            best_acc = val_acc
            torch.save(model.state_dict(), 'best_slowfast.pth')
    
    print(f"Training complete. Best Val Acc: {best_acc:.2f}%")

def evaluate(model, loader, criterion, device):
    model.eval()
    running_loss = 0.0
    correct = 0
    total = 0
    
    with torch.no_grad():
        for inputs, labels in loader:
            slow_inputs, fast_inputs = inputs
            slow_inputs = slow_inputs.to(device)
            fast_inputs = fast_inputs.to(device)
            labels = labels.to(device)
            
            outputs = model((slow_inputs, fast_inputs))
            loss = criterion(outputs, labels)
            
            running_loss += loss.item()
            _, predicted = outputs.max(1)
            total += labels.size(0)
            correct += predicted.eq(labels).sum().item()
    
    return 100. * correct / total, running_loss / len(loader)

# 使用示例
if __name__ == "__main__":
    # 假设已准备好数据集
    train_dataset = VideoDataset(train_video_paths, train_labels)
    val_dataset = VideoDataset(val_video_paths, val_labels)
    
    train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=4)
    val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False, num_workers=4)
    
    model = SlowFast(num_classes=101)  # 假设UCF101的101个类别
    train_model(model, train_loader, val_loader, epochs=50)

6. 经典论文与前沿研究

6.1 奠基性论文

  1. Two-Stream Convolutional Networks for Action Recognition in Videos (2014)

  2. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset (2017)

6.2 关键突破论文

  1. SlowFast Networks for Video Recognition (2019)

  2. Video Swin Transformer (2022)

6.3 前沿研究方向

  1. Masked Autoencoders Are Scalable Vision Learners (2021)

  2. UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning (2022)

  3. Language Models are General-Purpose Interfaces (2022)

7. 实际应用场景

7.1 智能监控与安防

  1. 异常行为检测

    • 技术方案:实时视频分析

    • 应用场景:公共场所安全监控

    • 效果:跌倒检测准确率>90%,暴力行为识别85%+

  2. 零售行为分析

    • 技术方案:顾客动线追踪

    • 商业价值:优化店铺布局,提升转化率

    • 案例:某连锁超市部署后销售额提升12%

7.2 医疗健康

  1. 康复训练评估

    • 技术方案:动作标准度分析

    • 医疗价值:量化康复进度

    • 精度:关键动作角度误差<3度

  2. 老年护理

    • 应用:跌倒预警系统

    • 响应时间:<2秒

    • 效果:减少30%跌倒相关伤害

7.3 体育与健身

  1. 运动员训练分析

    • 技术:3D动作捕捉

    • 功能:动作规范性评分

    • 案例:某NBA球队用于投篮姿势优化

  2. 智能健身镜

    • 产品:FITURE、Mirror等

    • 技术:实时动作纠正

    • 用户体验:实时反馈延迟<200ms

7.4 人机交互

  1. 手势控制

    • 应用:AR/VR交互

    • 延迟:<50ms

    • 识别率:复杂手势95%+

  2. 智能家居控制

    • 场景:无接触家电控制

    • 优势:适用于隐私敏感区域

8. 未来研究方向与挑战

8.1 技术前沿方向

  1. 多模态融合学习

    • 结合语音、文本上下文

    • 跨模态表示对齐

    • 挑战:异构数据同步

  2. 小样本行为学习

    • 元学习框架

    • 零样本行为识别

    • 挑战:稀有动作识别

  3. 神经符号系统

    • 结合深度学习与符号推理

    • 可解释行为分析

    • 挑战:知识表示

8.2 实际应用挑战

  1. 边缘计算部署

    • 轻量化模型设计

    • 实时性保证

    • 挑战:精度-效率平衡

  2. 隐私保护

    • 联邦学习框架

    • 差分隐私

    • 挑战:性能损失控制

  3. 领域自适应

    • 跨摄像头适应

    • 光照条件鲁棒性

    • 挑战:无监督适应

8.3 潜在突破点

  1. 行为预测(而不仅是识别)

    • 提前几秒预测即将发生的动作

    • 应用:预防性安防

  2. 因果行为理解

    • 区分相关性与因果性

    • 理解行为动机

  3. 终身学习系统

    • 持续学习新行为

    • 避免灾难性遗忘

    • 架构:神经突触可塑性模拟

结语

行为识别作为视频理解的核心任务,已经从传统的特征工程发展到如今的端到端深度学习时代。SlowFast等先进架构通过精心设计的双路径处理,实现了时空特征的高效建模,在多项基准测试中创造了新的性能记录。

然而,真实场景中的行为理解仍面临诸多挑战,包括细粒度动作区分、长时序依赖建模、小样本学习等问题。未来的研究需要将计算机视觉与其他AI领域(如自然语言处理、强化学习)更紧密地结合,发展出真正理解人类行为语义的智能系统。

随着边缘计算设备的普及和算法效率的提升,行为识别技术将更深入地融入我们的日常生活,从智能家居到城市管理,创造更加安全、便捷的人机共处环境。这一进程不仅需要技术创新,还需要伦理考量和隐私保护的同步发展,确保技术向善。

### MS-G3D 模型中的自定义数据集使用方法 MS-G3D 是一种用于处理图形和几何数据的深度学习框架,其设计初衷是为了支持多种三维数据的应用场景。为了在 MS-G3D 中成功应用自定义数据集,需遵循特定的数据准备流程以及模型输入的要求。 #### 数据格式要求 MS-G3D 支持的标准数据格式通常为 `.obj` 或 `.ply` 文件形式[^1]。这些文件包含了顶点坐标、面片信息以及其他可能的属性(如法线向量)。如果用户的自定义数据并非上述标准格式,则需要先将其转换为目标格式。可以借助工具库如 `trimesh` 或者 `open3d` 来完成这一过程: ```python import trimesh # 加载原始数据 mesh = trimesh.load('custom_data.xyz') # 导出到目标格式 mesh.export('converted_model.obj') ``` #### 数据预处理步骤 对于任何机器学习任务而言,高质量的数据预处理都是至关重要的环节之一。针对 MS-G3D 的需求,在加载自定义数据之前应执行如下操作: - **标准化**:将所有网格对象缩放到单位球体范围内以便统一尺度[^2]。 - **采样**:通过均匀分布或其他策略减少过多冗余点云数量至合理范围之内,从而提高计算效率并降低内存消耗。 以下是实现上述功能的一个简单例子: ```python from sklearn.preprocessing import StandardScaler import numpy as np def normalize_points(points): scaler = StandardScaler() normalized = scaler.fit_transform(points) return normalized points = np.random.rand(100, 3) # 假设这是你的点云数据 normalized_points = normalize_points(points) print(normalized_points[:5]) ``` #### 配置训练环境与运行脚本调整 当准备好适配于 MS-G3D 架构下的数据之后,还需要修改官方提供的配置文件来指定新路径及参数设置。具体来说就是编辑 YAML 格式的实验描述文档,其中至少要包含以下几个部分的信息更新: - 数据目录位置更改; - 输入尺寸匹配设定; - 批次大小重新规划等。 最后一步便是启动实际训练进程前验证一切改动无误后再正式提交作业给 GPU 资源调度器管理即可开始探索属于自己的独特成果啦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喵了个AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值