DeepSeek-R1作为一款开源的大型语言模型,在数学、编程和推理等多个任务上表现出了强大的性能。其纯强化学习的训练方法、开源与低成本的特性以及技术创新使得DeepSeek-R1成为了AI领域的一颗新星。
**在多个基准测试中,DeepSeek-R1的表现优于或接近OpenAI o1。**例如,在AIME 2024数学测试中,DeepSeek-R1的准确率接近OpenAI o1-0912的水平;在MATH-500、Codeforces和MMLU等测试中,也取得了优异的成绩。
一、DeepSeek
****DeepSeek(深度求索)是什么?****DeepSeek是杭州深度求索人工智能基础技术研究有限公司的简称,同时DeepSeek也是该公司研发的通用人工智能开源大模型平台。
DeepSeek完全基于自研训练框架、自建智算集群和万卡算力等资源,在短时间内取得了显著的研发成果。它通过大幅度缩减以往大模型所需要的庞大算力,直接把大模型的成本降了下来,被称为“AI界的拼多多”。
******DeepSeek系列模型有哪些?******DeepSeek系列模型包括R1(数学、代码及推理领域开源大模型,回答全面详实)、V3(自研MoE模型,性能顶尖且性价比极高)、VL(视觉与语言理解开源多模态模型)、V2(创新架构,推理成本低廉)、R1-Zero(强化学习预模型,独特优势)、以及蒸馏版Qwen和Llama小模型(从R1数据蒸馏,表现优异)。
-
DeepSeek-R1:一款在数学、代码及自然语言推理领域与OpenAI o1比肩的开源大模型,以其全面、详实的回答和结构化输出著称。
-
**DeepSeek-V3:**凭借自研MoE模型和671B参数,在性能上超越所有已发布的开源模型,成为极具性价比的顶尖大模型之一。
-
DeepSeek-VL:专为视觉和语言理解设计的开源多模态模型,能够处理复杂场景下的逻辑、公式识别及自然图像等问题。
-
DeepSeek-V2:以创新的模型架构和极低的推理成本,成为性价比极高的大模型选择。
-
DeepSeek-R1-Zero:采用强化学习训练的预模型,不走传统监督微调路线,展现独特优势。
-
蒸馏版Qwen、Llama系列小模型:从DeepSeek-R1数据上蒸馏得到的小模型,表现优秀,部分任务上甚至超越GPT-4o。
二、DeepSeek-R1
DeepSeek-R1是什么?DeepSeek-R1是一款在2025年1月20日发布的大型语言模型,它采用了包含6710亿参数的MoE(专家混合)架构,特别主打推理功能。同时DeepSeek-R1开源了模型权重,并采用了宽松的MIT许可协议,为开发者提供了极大的便利和灵活性。
DeepSeek-R1与OpenAI-o1相比,其优势在于开源特性、强化学习训练的高效推理能力以及低成本,为开发者提供了更多选择和灵活性。
**DeepSeek-R1的核心亮点是什么?**DeepSeek-R1的核心亮点在于其作为首个完全通过强化学习训练的大型语言模型,无需监督微调,结合冷启动数据显著提升了推理能力,并提供多个蒸馏版本及低成本的API服务。
-
DeepSeek-R1-Zero是首个完全通过强化学习(RL)训练的大型语言模型,无需依赖监督微调(SFT)或人工标注数据。为了进一步提升模型性能,DeepSeek-R1引入了冷启动数据,结合强化学习进行训练。解决了R1-Zero在可读性和语言混合方面的局限性,显著提升了模型的推理能力。
-
DeepSeek-R1提供了六个蒸馏版本(1.5B至70B),适合不同规模的开发者使用。与OpenAI o1相比,API调用成本显著降低。
****DeepSeek-R1的核心创新是什么?****DeepSeek-R1的技术创新在于开发了GRPO算法以优化策略网络,避免了高计算开销,同时设计了多层次奖励机制和“思考-回答”双阶段训练模板,确保模型推理的高效性、可读性和过程可追踪性。
-
DeepSeek开发的GRPO算法通过群组相对优势估计,优化了策略网络,有效降低了传统Critic网络的高计算开销。
-
DeepSeek-R1采用了包括准确性、格式和语言一致性在内的多层次奖励机制,确保了模型在推理任务中的高效性和输出内容的可读性。
-
通过“思考-回答”双阶段训练模板,DeepSeek-R1实现了推理过程的可追踪性,并为奖励计算提供了明确基准,从而输出了结构化的答案。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓