本文详细介绍了如何利用AI工具,特别是那些具有深度联网搜索能力的大模型,来提高信息检索的效率和准确性。
前言
随着今年DeepSeek的爆火,结合去年至今KIMI、通义千问、豆包大模型的快速发展,在日常工作中,很多同学都养成了“遇事不决,AI来答”的良好习惯。使用AI工具进行问答,往往能帮助我们快速提效,补全知识信息短板。同时,我们对于"深度联网搜索"模式的依赖程度也在日益上升,甚至有时候能让我们忘记了搜索引擎的存在。比如通义与DPSK的网页版:
在使用这些功能时,AI往往会通过一个思考体,将用户问题进行改写或转换,然后分别进行搜索引擎的召回,最终再将收集到的Docs进行总结和输出。有一些互联网搜索如Google Search的常见技巧,对于AI也是可以理解的,在使用prompt进行问答时结合使用,可以让AI的回答更加遵循我们的想法。
一. 指定网站的检索:site语法
site语法可以帮助我们在检索时,让大模型优先根据我们指定的网站来进行检索,比如我想要查找华为的最新产品,并且是来自于华为官网的信息,那么我可以直接指定:site:huawei.com/cn。这里以通义为例:
或者我想问今年最新的房贷政策,要求大模型的总结来源一定是某政府网站,我可以用.gov.cn来结尾,这里我以kimi为例:
二. 通配符的使用
当检索时,我们只掌握了部分信息,或者我们想控制我们检索出来的内容包含某些东西,我们可以使用以下通配符,这些同样适用于百度/谷歌的直接搜索:
通配符 | 是否还生效 | 用法 |
+ | 生效 | 在两个关键词之间加上加号表示 搜索时两者缺一不可 |
- | 已经不生效,包括在谷歌搜索尝试: | 在关键词的前面使用减号,也就意味着在查询结果中不能出现该关键词。 |
? | 生效 | 匹配符,匹配的字符数要受到限制 |
* | 生效 | 匹配符,匹配的字符数不受到限制。适合我知道部分信息,但不清楚具体信息时的检索 |
示例如下:
通配符:“+”
-
例子:今年夏天我想规划一条旅游路线,西双版纳+大象
-
返回示例:
通配符:“ ?”
-
例子:我想知道国内这个城市,张家? 的介绍
-
返回示例:
通配符:“*”
-
例子:我想买车,有朋友向我推荐 *ultra 这款车型,请帮我评价一下
-
返回示例:
三. 限定时间范围
可以通过datarange: 或直接 .. 进行检索资料的时间限定,筛选特定时间段的文档。比如:我想要检索2023年到2025年间的浙江房价:
四. 布尔逻辑的使用
AND - 与
-
例子:我想去广东,请告诉我 广州著名 AND 火锅类的美食
OR - 或
-
例子:请介绍小米su7 OR 小米su7 ultra
NOT - 非
-
例子:请介绍su7,NOT 小米 su7 ultra
Prompt技巧
以下内容摘自苏江老师的《学会提问 -- AI大模型时代与ChatGPT对话的关键技能》。
来一点哲学思考
-
苏格拉底式提问法:通过一系列精心设计的问题,引导对方自己发现问题的答案。这种方法强调了思考、探索和发现的过程,而非简单接受他人的观点。(批判性思维)
-
具体过程:提出一个开放性问题 -> 使用反问技巧,提出与问题相反的观点 -> 持续追问:深入了解问题的各个层面。
-
例子:想要询问ChatGPT对初创公司的理解,首先提出一个开放性问题:初创公司如何在竞争激烈的市场中脱颖而出?
-
沃伦·贝格尔提问技巧:《如何提出一个好问题》作者沃伦·贝格尔讲述了如何通过高质量的问题挖掘更深层次的知识。
-
具体过程:
-
提出明确的问题
-
追求深度
-
合理安排提问的顺序
-
从不同角度进行提问
-
质疑假设
-
探求证据
-
分析问题的关联性
Prompt类型
prompt构建技巧
-
基本技巧:
-
明确问题的表述:避免使用模糊或不完整的句子,确保问题表述清晰明确。
比如:
-
天气如何?-- 🙅
-
今天杭州天气如何?-- 🙆
-
限定问题的范围:增加背景信息和条件,细化问题。
比如:
-
市场上最好的笔记本电脑是哪款?-- 🙅
-
截止到2025年1月,中国市场上,综合考虑性能和用户等评价,用于办公最好的笔记本电脑是哪款?-- 🙆
-
指导AI进行逻辑推理与分析:可以在问题中添加要求AI分析、比较或解释的元素。
比如:
-
请介绍一下太阳能发电系统的原理?-- 🙅
-
请介绍一下太阳能发电系统的原理,并比较光伏发电和光热发电的优缺点?-- 🙆
-
高级技巧:
-
调整语气和风格,可以通过阐述明确目的进行语言风格的调整。
-
设计精准的指令:需要明确具体的任务目标、具体清晰的词汇、简洁明了的表达。
-
考虑上下文与背景信息:给定充足的上下文信息,帮助AI能够更加设身处地地为我们思考。
高效prompt框架
-
Instruction(指令):明确告诉AI你期望执行的任务,比如“请解释加速度是什么”,应简洁明了。
-
Context(背景):选填,提供上下文信息,帮助AI更好地理解问题,比如“在古代中国的文化背景下,请微我编写一首古风诗”。
-
Input Data(输入数据):选填,提供具体数据让AI进行处理,比如“下面是一组股票价格数据,请帮我计算出它们的均价”。
-
Output Indicator(指示器):指示AI输出结果的类型或格式,比如“请用一段通俗易懂的文字解释量子计算的原理”。
以上是基础的prompt框架,在处理更复杂的问题时,还需要掌握另一种更加高级的prompt框架 -- CRISPE框架。
-
CR(capacity and role,能力与角色):需要明确告诉AI它在对话中扮演的角色以及应该具备的能力。“你是...”
-
I(Insight,洞察力):涉及背景信息和上下文,让AI了解用户的具体需求和相关的背景知识。“最近...”
-
S(statement,指令):告诉AI我们希望它做什么。“请你为我...”
-
P(personality,个性):希望AI回答时呈现的风格或方式。“用...风格”
-
E(experiment,尝试):可以要求AI为我们提供大于一种解决方案或答案,以便用户有更多的选择和参考。“提供...份...”
举个例子:
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓