6.10 奇异值

对单位圆的乘法

  首先我们在单位圆上遍历所有的点,作为二维向量,来研究某个矩阵乘以这些向量得到的结果,我们选三种矩阵,秩为0的矩阵,秩为1的矩阵和秩为2的矩阵。
  秩为0的矩阵就一个,也就是0矩阵,毫无疑问,它把所有向量变成0向量,没什么可以多说的了。
  我们任选一个秩为1的矩阵,就选这个吧:
( 1 1 1 1 ) \begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix} (1111)
  然后我们再遍历单位圆上的所有向量,毫无以为可以用以下形式表示任意单位向量:
( cos ⁡ θ sin ⁡ θ   ) \begin{pmatrix} \cos \theta \\ \sin \theta \ \end{pmatrix} (cosθsinθ )
  那么矩阵乘以这些单位向量就变成了以下向量:
( cos ⁡ θ + sin ⁡ θ cos ⁡ θ + sin ⁡ θ ) \begin{pmatrix} \cos \theta+\sin \theta \\ \cos \theta+\sin \theta \end{pmatrix} (cosθ+sinθcosθ+sinθ)
  最终它把所有单位向量都变到这根直线上:
在这里插入图片描述
  再找个秩为2的矩阵,就选个简单点的:
( 1 1 1 0 ) \begin{pmatrix} 1 & 1\\ 1 & 0 \end{pmatrix} (1110)
  那么矩阵乘以这些单位向量就变成了以下向量:
( cos ⁡ θ + sin ⁡ θ cos ⁡ θ ) \begin{pmatrix} \cos \theta+\sin \theta \\ \cos \theta \end{pmatrix} (cosθ+sinθcosθ)
  它把单位向量变到这个斜放的椭圆上:
在这里插入图片描述

矩阵2-范数的定义

  回忆下矩阵2-范数的定义:
∥ A ∥ 2 = max ⁡ ∥ A x ∥ 2 ∥ x ∥ 2 \parallel A \parallel_2=\max \frac{\parallel Ax \parallel_2}{\parallel x \parallel_2} A2=maxx2Ax2
  现在这些向量都是单位向量,2-范数都是1。所以上式k可以变成:
∥ A ∥ 2 = max ⁡ ∥ A x ∥ 2 \parallel A \parallel_2=\max \parallel Ax \parallel_2 A2=maxAx2
  那就是在上图的绿色图形中找到离原点最远的那个点的长度就是2-范数了。以第一个秩为1的矩阵为例子,它绿色曲线上2-范数最大的向量是:
( ± 2 ± 2 ) \begin{pmatrix} \pm \sqrt2 \\ \pm \sqrt2 \end{pmatrix} (±2 ±2 )
  所以它的2-范数是2.
  下面这个矩阵呢?它那个绿色曲线最圆的点是什么呢?直接硬算是不好算的,因为是斜的,所以需要把坐标变一下,这根绿色的曲线,按 y = 5 − 1 2 x y=\cfrac{\sqrt5-1}2x y=25 1x这根直线轴对称。如图:
在这里插入图片描述
  解以下方程组:
x 2 − 2 x y + 2 y 2 = 1 y = 5 − 1 2 x ⇒ x 2 − 2 x 5 − 1 2 x + 2 ( 5 − 1 2 x ) 2 = 1 ⇒ x 2 − ( 5 − 1 ) x 2 + 2 6 − 2 5 4 x 2 = 1 ⇒ x 2 − ( 5 − 1 ) x 2 + ( 3 − 5 ) x 2 = 1 ⇒ 5 x 2 − 2 5 x 2 = 1 ⇒ x 2 = 5 + 2 5 5 x = ± 5 + 2 5 5 y 2 = 3 − 5 2 × 5 + 2 5 5 y = ± 5 + 5 10 x^2-2xy+2y^2=1\\ y=\cfrac{\sqrt5-1}2x\\ \Rightarrow x^2-2x\cfrac{\sqrt5-1}2x+2(\cfrac{\sqrt5-1}2x)^2=1\\ \Rightarrow x^2-(\sqrt5-1)x^2+2\cfrac{6-2\sqrt5}4x^2=1\\ \Rightarrow x^2-(\sqrt5-1)x^2+(3-\sqrt5)x^2=1\\ \Rightarrow 5x^2-2\sqrt5x^2=1\\ \Rightarrow x^2=\frac{5+2\sqrt5}{5}\\ x=\pm \sqrt{\frac{5+2\sqrt5}{5}}\\ y^2=\frac{3-\sqrt5}2\times\frac{5+2\sqrt5}{5}\\ y=\pm \sqrt{\frac{5+\sqrt5}{10}} x22xy+2y2=1y=25 1xx22x25 1x+2(25 1x)2=1x2(5 1)x2+24625 x2=1x2(5 1)x2+(35 )x2=15x225 x2=1x2=55+25 x=±55+25 y2=235 ×55+25 y=±105+5
  所以绿色曲线上2-范数最大的向量是:
( ± 5 + 2 5 5 ± 5 + 5 10 ) \begin{pmatrix} \pm \sqrt{\frac{5+2\sqrt5}{5}} \\ \pm \sqrt{\frac{5+\sqrt5}{10}} \end{pmatrix} ±55+25 ±105+5
  那么它的二范数就是:
x 2 + y 2 = 5 + 2 5 5 + 5 + 5 10 = 15 + 5 5 10 = 3 + 5 2 x^2+y^2=\frac{5+2\sqrt5}{5}+\frac{5+\sqrt5}{10}\\=\frac{15+5\sqrt5}{10}=\frac{3+\sqrt5}{2} x2+y2=55+25 +105+5 =1015+55 =23+5

奇异值

  好了,但是这样求2-范数也太麻烦了吧,要解二元二次方程组,还要用到微积分或代数几何知识?其实大可不必。奇异值就是用来做这个事情的,奇异值的定义是 A H A A^HA AHA的所有特征值。以上例中的秩为2的矩阵来说,它有两个奇异值:
σ 1 = 3 + 5 2 , σ 2 = 3 − 5 2 \sigma_1=\frac{3+\sqrt5}{2},\sigma_2=\frac{3-\sqrt5}{2} σ1=23+5 ,σ2=235
  这恰好是对单位圆拉伸的最大与最小长度,而且这两个拉伸方向是成正交的。对于高维的矩阵,就分别是球体的 n n n个方向的拉伸倍数,这几个方向中有最大拉伸倍数也有最小拉伸倍数。所以通过二维的变换就可以更容易理解奇异值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值