上极限与下极限

目录

一、前言

二、引入上极限与下极限的原因

三、上极限与下极限的两种定义方式

(一) 对方式一做具体说明

1.相关定义

2.定理证明

(二) 对方式二做具体说明

1.相关定义

2.定理证明

四、上极限与下极限的性质 

五、上极限和下极限的运算

六、一些思考​​​​​​​


​​​​​​​

一、前言

我们意欲通过上极限与下极限的引入,来探索子列构造在相关定理证明中的应用。

二、引入上极限与下极限的原因

  研究级数的敛散性常常需要借助于某些数列,但这些数列本身却不一定收敛,因而有必要引进比“极限存在”稍弱一些、并在一定程度上反映其变化规律的新概念.

  Bolzano-Weierstrass定理告诉我们,有界数列中必有收敛子列.这启示我们,对不存在极限的数列,或许可以用它的子列的极限情况来刻画它本身的变化情况.

三、上极限与下极限的两种定义方式

方式一:

{x_{n}}\rightarrow \lim_{k\to\infty } x_{n_{k}}=\xi \rightarrow E=\left \{ \xi \right \}\rightarrow supE\rightarrow maxE\rightarrow\overline{\lim_{n\to\infty }}x_{n}

方式二:

x_{n}\rightarrow b_{n}=sup\left \{x _{n+1}, x _{n+2},...\right \}=\underset{k>n}{sup}\left \{ x_{k} \right \}

(一) 对方式一做具体说明

1.相关定义

极限点:有界数列\left \{x _{n} \right \} 中,若存在它的一个子列\left \{ x_{n_{k}} \right \}使得 \lim_{k\to\infty } x_{n_{k}}=\xi ,则称\xi为数列\left \{x _{n} \right \}的极限点.

 显然,  “\xi为数列\left \{x _{n} \right \}的极限点”也可以等价地表述为:“对于任意给定的\xi>0,存在\left \{x _{n} \right \}中的无穷多个项属于\xi\varepsilon邻域”.

 E={​\{​\xi|\xi\left \{x _{n} \right \}的极限点\}

上极限: E的最大值H=maxE称为数列\left \{x _{n} \right \}的上极限,记为\overline{\lim_{n\to\infty }}x_{n}

下极限: E的最小值h=minE称为数列\left \{x _{n} \right \}的下极限,记为\underset{\overline{n\to\infty }}{lim}x_{n}.

2.定理证明

 E显然是非空的有界集合,因此,E的上确界H=supE和下确界h=infE存在.

 定理:E的上确界H和下确界h均属于E,即H=maxEh=minE.

 证  H=supE可知,存在\xi_{k}\in E(k=1,2,...), 使得 \lim_{k\to\infty }\xi_{k}=H.

       取\varepsilon _{k}=\frac{1}{k}(k=1,2,...).

       因为\xi _{1}\left \{x _{n} \right \}的极限点,所以在O\left ( \xi _{1},\varepsilon _{1} \right )中有\left \{x _{n} \right \}的无穷多个项,取x_{n_{1}}\in O\left ( \xi _{1},\varepsilon _{1} \right );

       因为\xi _{2}\left \{x _{n} \right \}的极限点,所以在O\left ( \xi _{2},\varepsilon _{2} \right )中有\left \{x _{n} \right \}的无穷多个项,取x_{n_{2}}\in O\left ( \xi _{2},\varepsilon _{2} \right );

       ……

       因为\xi _{k}\left \{x _{n} \right \}的极限点,所以在O\left ( \xi _{k},\varepsilon _{k} \right )中有\left \{x _{n} \right \}的无穷多个项,取x_{n_{k}}\in O\left ( \xi _{k},\varepsilon _{k} \right )

       ……

       这么一直做下去,便得到\left \{x _{n} \right \}的子列\left \{ x_{n_{k}} \right \},满足\left | x_{n_{k}}-\xi _{k} \right |<\frac{1}{k},

       于是有\lim_{k\to\infty }x_{n_{k}}=\lim_{k\to\infty }\xi _{k}=H,

       H\left \{x _{n} \right \}的极限点,也就是说,H\in E

       同理可证h\in E.

(二) 对方式二做具体说明

1.相关定义

极限点:有界数列\left \{x _{n} \right \} 中,若存在它的一个子列\left \{ x_{n_{k}} \right \}使得 \lim_{k\to\infty } x_{n_{k}}=\xi ,则称\xi为数列\left \{x _{n} \right \}的极限点.

 设\left \{x _{n} \right \}是一个有界数列,令

b_{n}=sup\left \{x _{n+1}, x _{n+2},...\right \}=\underset{k>n}{sup}\left \{ x_{k} \right \}a_{n}=inf\left \{x _{n+1}, x _{n+2},...\right \}=\underset{k>n}{inf}\left \{ x_{k} \right \},

\left \{ a_{n} \right \}是单调增加有上界的数列,\left \{ b_{n} \right \}是单调减少有下界的数列,因此数列\left \{ a_{n} \right \}\left \{ b_{n} \right \}都收敛.

 记

 H^{*}=\lim_{n\to\infty }b_{n}=\lim_{n\to\infty }\underset{k>n}{sup}\left \{ x_{k} \right \}  ,  h^{*}=\lim_{n\to\infty }a_{n}=\lim_{n\to\infty }\underset{k>n}{inf}\left \{ x_{k} \right \}.

2.定理证明

定理H^{*}是 \left \{x _{n} \right \}的最大极限点,h^{*}是 \left \{x _{n} \right \}的最大极限点.

证  首先证明,\left \{x _{n} \right \}的任意一个极限点\xi满足h^{*}\leqslant\xi \leqslant H^{*}.

      设\lim_{k\to\infty } x_{n_{k}}=\xi,则对一切k\in N^{+},成立a_{n_{k}-1}\leqslant x_{n_{k}}\leqslant b_{n_{k}-1},(从通项入手)

      \lim_{n\to\infty }a_{n}=h^{*},\lim_{n\to\infty }b_{n}=H^{*}\lim_{n\to\infty }x_{n_{k}}=\xi,得到h^{*}\leqslant\xi \leqslant H^{*}.

      其次证明,存在\left \{x _{n} \right \}的子列\left \{x _{n_{k}} \right \}\left \{x _{m_{k}} \right \},使得\lim_{k\to\infty } x_{n_{k}}=H^{*}\lim_{k\to\infty } x_{m_{k}}=h^{*}.

      取\varepsilon _{k}=\frac{1}{k},k=1,2,....

      对\varepsilon _{1}=1,由b_{1}=\underset{i>1}{sup}\left \{ x_{i} \right \} , \exists n_{1}:b_{1}-1<x_{n_{1}}\leqslant b_{1};

      对\varepsilon _{2}=\frac{1}{2},由 b_{n_{1}}=\underset{i>n_{1}}{sup}\left \{ x_{i} \right \}\exists n_{2}>n_{1}:b_{n_{1}}-\frac{1}{2}<x_{n_{2}}\leqslant b_{n_{1}} ;

      ……

      对\varepsilon _{k+1}=\frac{1}{k+1},由b_{n_{k}}=\underset{i>n_{k}}{sup}\left \{ x_{i} \right \}\exists n_{k+1}>n_{k}:b_{n_{k}}-\frac{1}{k+1}<x_{n_{k+1}}\leqslant b_{n_{k}}

     ……

     令k\rightarrow \infty,由数列极限的夹逼性,得到\lim_{n\to\infty }x_{n_{k}}=\lim_{n\to\infty }b_{n_{k}}=\lim_{n\to\infty }a_{n_{k}}=H^{*}

    同理可证存在子列\left \{x _{m_{k}} \right \},使得\lim_{k\to\infty }x_{m_{k}}=h^{*}.

过程分析:“首先证明”部分,证的是“H^{*}如果是极限点,那么H^{*}为max” ,

                  “其次证明”部分,证的是“H^{*}是极限点”.

四、上极限与下极限的性质 

为了以后讨论上下极限的运算问题的方便,先给出一个有用的结论。 

定理:设 \left \{x _{n} \right \}是有界数列.则

(1)\overline{\lim_{n\to\infty }}x_{n}=H的充分必要条件是:对任意给定的\varepsilon >0,

(i)存在正整数N,使得x_{n}<H+\varepsilon .一切n>N成立;

(ii)\left \{x _{n} \right \}中有无穷多项,满足x_{n}>H-\varepsilon .

(2)\underset{\overline{n\to\infty }}{lim}x_{n}=h的充分必要条件是:对任意给定的\varepsilon >0,

(i)存在正整数N,使得x_{n}>h-\varepsilon .一切n>N成立;

(ii)\left \{x _{n} \right \}中有无穷多项,满足x_{n}<h+\varepsilon .

五、上极限和下极限的运算

上极限与下极限的运算与后续一般函数的函数项级数收敛域的计算有关,下面我们来介绍有关上下极限的运算规律。

定理:设 \left \{x _{n} \right \},\left \{y_{n} \right \} 是两数列,则

(1)\overline{\lim_{n\to\infty }}(x_{n}+y_{n})\leqslant \overline{\lim_{n\to\infty }}x_{n}+ \overline{\lim_{n\to\infty }}y_{n},  \underset{\overline{n\to\infty }}{lim}(x_{n}+y_{n})\geqslant \underset{\overline{n\to\infty }}{lim}x_{n}+\underset{\overline{n\to\infty }}{lim}y_{n};

(2)若\lim_{n\to\infty }x_{n}存在,则

        \overline{\lim_{n\to\infty }}(x_{n}+y_{n})=\lim_{n\to\infty }x_{n}+ \overline{\lim_{n\to\infty }}y_{n},  \underset{\overline{n\to\infty }}{lim}(x_{n}+y_{n})= \lim_{n\to\infty }x_{n}+\underset{\overline{n\to\infty }}{lim}y_{n};

  要求上述诸式的右端不是待定型。

六、一些思考

题给条件有“上下确界”时,构造子列,利用无限逼近的原理。

  • 17
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Runge芝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值