目录
🎯一、任意项级数
如果一个级数既有无限个正项,又有无限个负项,那么正项级数的各种判别法将不再适用.为此,我们从正项级数转向讨论任意项级数,也就是通项任意地可正或可负的级数.
🎯二、任意项级数的收敛判别法
🚍(零)知识的联系
任意项级数的收敛判别法在函数项级数的收敛性讨论中经常会被使用到.
🚍(一)级数的Cauchy收敛原理
级数
收敛的充分必要条件是:对任意给定的
,存在正整数
,使得
对一切
成立.
(常用于判定级数不收敛)
对上述定理,当
时,上式即为
,于是就得到级数收敛的必要条件
.
🚍(二)Leibniz判别法
定理: Leibniz级数必收敛
Leibniz级数:级数的一般项正负交错,一般项的绝对值单调减少且收敛于0
(经常用于“函数项级数收敛域是否包括收敛半径”的判别)
例题: 证明级数
收敛.
证:易知
.
显然
是单调减少数列,且
,
所以
是Leibniz级数,收敛.
🚍(三)级数的A-D判别法
若下列两个条件之一满足,则级数
收敛:
(1)(Abel判别法)
单调有界,
收敛;
(2)(Dirichlet判别法)
单调趋于0,
有界.
🎯三、级数的绝对收敛与条件收敛
🐏
:由
收敛原理和三角不等式,很容易知道:若对一个数项级数
逐项取绝对值得到新的级数
(该级数可以使用正项级数的敛散性判别法),则当
收敛时必有
收敛.
🐏
:不能由
收敛断言
也收敛
🐏
:如果级数
收敛,则称
为绝对收敛级数.如果级数
收敛而
发散, 则称
为条件收敛级数.
🐏
:由
发散并不能得出
发散,但若用Cauchy判别法或d’Alembert判别法判断出
发散,则级数
本身一定发散,这是因为这两个判别法判定发散的依据是级数的通项不趋于0,即不满足收敛的必要条件.
🎯四、一些思考
三角函数由于其性质的特殊(周期性,公式多,有界,特别好放缩),而常常被当成考察对象,这些操作,就是数学分析学习过程中需要记忆的部分
放大差距找到规律 (符号消不掉,那就承认有)