任意项级数的敛散性判别

本文探讨了任意项级数的收敛判别法,包括Cauchy收敛原理、Leibniz判别法和A-D判别法。重点讲解了如何通过这些方法判断级数的收敛性,并区分绝对收敛与条件收敛。通过实例演示,展示了在函数项级数中的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

🎯一、任意项级数

🎯二、任意项级数的收敛判别法

🚍(零)知识的联系

🚍(一)级数的Cauchy收敛原理

🚍(二)Leibniz判别法

🚍(三)级数的A-D判别法 

🎯三、级数的绝对收敛与条件收敛

🎯四、一些思考


🎯一、任意项级数

  如果一个级数既有无限个正项,又有无限个负项,那么正项级数的各种判别法将不再适用.为此,我们从正项级数转向讨论任意项级数,也就是通项任意地可正或可负的级数.

🎯二、任意项级数的收敛判别法

🚍(零)知识的联系

任意项级数的收敛判别法在函数项级数的收敛性讨论中经常会被使用到.

🚍(一)级数的Cauchy收敛原理

 级数 \sum_{n=1}^{\infty }x_{n} 收敛的充分必要条件是:对任意给定的\varepsilon >0,存在正整数N,使得\left | x_{n+1}+x_{n+2}+...+x_{m} \right |=\left | \sum_{k=n+1}^{m} x_{k}\right |<\varepsilon 对一切m>n>N成立.

(常用于判定级数不收敛)

对上述定理,当m=n+1时,上式即为\left | x_{n+1} \right |<\varepsilon,于是就得到级数收敛的必要条件\lim_{n\to\infty }x_{n}=0

🚍(二)Leibniz判别法

定理: Leibniz级数必收敛

Leibniz级数:级数的一般项正负交错,一般项的绝对值单调减少收敛于0

(经常用于“函数项级数收敛域是否包括收敛半径”的判别)

例题: 证明级数\sum_{n=1}^{\infty }sin(\sqrt{n^{2}+1}\pi)收敛.

证:易知 sin(\sqrt{n^{2}+1}\pi)=(-1)^{n}sin(\sqrt{n^{2}+1}-n)\pi=(-1)^{n}sin\frac{\pi}{\sqrt{n^{2}+1}+n}.

       显然\left \{ sin\frac{\pi}{\sqrt{n^{2}+1}+n} \right \}是单调减少数列,且\lim_{n\to\infty }sin\frac{\pi}{\sqrt{n^{2}+1}+n}=0,

       所以\sum_{n=1}^{\infty }sin(\sqrt{n^{2}+1}\pi)是Leibniz级数,收敛.

🚍(三)级数的A-D判别法 

 若下列两个条件之一满足,则级数 \sum_{n=1}^{\infty }a_{n}b_{n}收敛:

(1)(Abel判别法)\left \{a _{n} \right \}单调有界,\sum_{n=1}^{\infty }b_{n}收敛;

(2)(Dirichlet判别法)\left \{a _{n} \right \}单调趋于0,\left \{ \sum_{i=1}^{n }b_{i} \right \}有界.

🎯三、级数的绝对收敛与条件收敛

🐏Point 1:由Cauchy收敛原理和三角不等式,很容易知道:若对一个数项级数\sum_{n=1}^{\infty }x_{n}逐项取绝对值得到新的级数\sum_{n=1}^{\infty }|x_{n}|(该级数可以使用正项级数的敛散性判别法),则当\sum_{n=1}^{\infty }|x_{n}|收敛时必有\sum_{n=1}^{\infty }x_{n}收敛.

 🐏Point 2:不能由\sum_{n=1}^{\infty }x_{n}收敛断言\sum_{n=1}^{\infty }|x_{n}|也收敛

 🐏Point 3:如果级数\sum_{n=1}^{\infty }|x_{n}|收敛,则称\sum_{n=1}^{\infty }x_{n}绝对收敛级数.如果级数\sum_{n=1}^{\infty }x_{n}收敛而\sum_{n=1}^{\infty }|x_{n}|发散, 则称\sum_{n=1}^{\infty }x_{n}条件收敛级数.

  🐏Point 4:由\sum_{n=1}^{\infty }|x_{n}|发散并不能得出\sum_{n=1}^{\infty }x_{n}发散,但若用Cauchy判别法或d’Alembert判别法判断出\sum_{n=1}^{\infty }|x_{n}|发散,则级数\sum_{n=1}^{\infty }x_{n}本身一定发散,这是因为这两个判别法判定发散的依据是级数的通项不趋于0,即不满足收敛的必要条件.

🎯四、一些思考

三角函数由于其性质的特殊(周期性,公式多,有界,特别好放缩),而常常被当成考察对象,这些操作,就是数学分析学习过程中需要记忆的部分

放大差距找到规律 (符号消不掉,那就承认有)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Runge芝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值