在数学分析中,函数扮演着极其重要的角色,判断起主要作用的函数,能够快速求取函数极限,从而正确判断反常积分的敛散性。
目录
前言
小R最近学习到了“反常积分的收敛判别法”,即以p-积分为依托,找到被积函数与p-积分的关系,从而判断反常积分的敛散性,省去了求取原函数的麻烦,其中有一道题令小R印象深刻:
讨论
(非负函数反常积分)的敛散性.
引发了小R对这一类问题的思考,即函数世界的“弱肉强食”问题(不同类型函数相遇,起主要作用函数的判断问题),大家熟悉的“指数爆炸”就是我们之后讨论问题的基础之一。
一、反常积分的本质是什么?
定义:区别于Riemann积分,考虑积分区间无限或被积函数无界的积分问题,这样的积分称为反常积分(或广义积分)。
在实际做题当中,我们将抽象概念具象化,那么就有:反常积分=积分+极限,这就是小R所说的反常积分的本质~
二、判断反常积分敛散性的解题基础
1.非负函数反常积分的收敛判别法(Cauchy判别法)
(针对于无穷区间)设在
上恒有
,K是正常数,
若
且
则
收敛;
若
且
则
发散.
(针对于无界函数)设在
上恒有
若当x属于b的某个左领域
时,存 在正常数K,使得
且
则
收敛;
且
则
发散.
在实际做题过程中,Cauchy判别法的极限形式 在构造有效p-积分,也就是被积函数的比较对象时,形式更加简洁,因而相较Cauchy判别法更加常用。下面我们给出Cauchy判别法的极限形式:
(针对于无穷区间)
设在
上恒有
,且
则
(1)若
且
, 则
收敛;
(2)若
且
则
发散.
(针对于无界函数)
设在
上恒有
且
则
(1)若
且
则
收敛;
(2)若
且
则
发散.
2.一般函数反常积分的收敛判别法(A-D判别法)
(针对于无穷区间)若下列两个条件之一满足,则
收敛:
(Abel判别法)
收敛,
在
上单调有界;
(Dirichlet判别法)
在
上有界,
在
上单调且
(针对于无界函数)若下列两个条件之一满足,则
收敛:
(Abel判别法)
收敛,
在
上单调有界;
(Dirichlet判别法)
在
上有界,
在
上单调且
事实上,在实际应用中,Dirichlet判别法更加常用。(为了方便记忆,口诀奉上:半积有界半单调,单函极限等于零)
两类判别法的证明依托于Cauchy收敛原理和积分第二中值定理,证明过程不再进行详细说明,有感兴趣的小伙伴可以私聊小R~
三、做题实操
这里,我们只对被积函数中含
的反常积分进行敛散性的判别,得出这一类反常积分敛散性判别的一般解题思路:
1. 讨论 的敛散性(
).
解 这是个定号的反常积分,是它惟一的奇点.(断类型,定方法)
当时,取
则
,(*)
由Cauchy判别法的极限形式,收敛.
类似地,当时,取
则
,(*)
由Cauchy判别法的极限形式,发散.(根据经验分区间,区间不同方法同)
当p=1时,可以直接使用Newton-Leibniz公式得到.(*)
因此,当时,反常积分
收敛;当
时,反常积分
发散.
(完整的解题步骤应包括:分析题干,选择方法,下定结论)
稍作补充,需要注意的是,当
时,由于
,因此
是正常积分.做题时,应注意区别这类情形.
2.讨论的敛散性.
解 因为(*),且对任意
(*)
由Cauchy判别法的极限形式,积分收敛.
四、一些思考
解释一下(*)的步骤
事实上,求取某点处极限的本质就是将该点转化为函数的可带点,在上述极限求取的过程中,0点处我们忽视了lnx,1点处我们将lnx等价为x-1;
而在0处的操作,就是笔者在文章开头提到的判断起主要作用的函数,这里对数函数较幂函数而言可以忽略(对数函数进行有限次求导,可以转化为幂函数的形式),故我们只需判断相应函数的幂函数部分在0处的极限情况,而这是极其简单的。