双同步坐标系解耦(DDSRF)

 1、正负序分离

利用负序电流和零序电压进行相间均压控制时,首先需要对电网和SVG中的电压电流进行正负序分离(三相无中线连接的系统中不存在零序电流通道,故而分析系统电压时不考虑零序电动势),即三相电压可分为三相正序电压和三相负序电压。运用Clarke变换和Park变换可将三相静止坐标系转换为两相旋转坐标系,以便于后续动态研究。下式为三相电压与两相旋转坐标系下正负序电压之间关系。相关推导过程可以看B站木修于淋老师的相关视频

\begin{bmatrix} U_{a}\\ U_{b}\\ U_{c}\end{bmatrix}= \begin{bmatrix} cos (wt)\\ cos (wt+\frac{2}{3}\pi )\\ cos (wt-\frac{2}{3}\pi ) \end{bmatrix}\\= \begin{bmatrix} U_{ap}\\ U_{bp}\\ U_{cp}\end{bmatrix}+\begin{bmatrix} U_{an}\\ U_{bn}\\ U_{cn}\end{bmatrix}\\ =\begin{bmatrix} \cos (wt) & -\sin (wt)\\ cos (wt-\frac{2}{3}\pi ) & -\sin (wt-\frac{2}{3}\pi )\\ cos (wt+\frac{2}{3}\pi ) & -\sin (wt+\frac{2}{3}\pi ) \end{bmatrix}\cdot \begin{bmatrix} E_{dp}\\ E_{qp}\end{bmatrix} \\+\begin{bmatrix} \cos (wt) & \sin (wt)\\ cos (wt+\frac{2}{3}\pi ) & \sin (wt+\frac{2}{3}\pi )\\ cos (wt-\frac{2}{3}\pi ) & \sin (wt-\frac{2}{3}\pi ) \end{bmatrix}\cdot \begin{bmatrix} E_{dn}\\ E_{qn}\end{bmatrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值