Description
在一个教室里有
n
n
n 排座位,每排有
6
6
6 个,从左至右标号分别为 ABCDEF
,其中 C
和 D
中有过道,通往教室前端和后端的两个房间,每个房间最开始没有人,每个座位上开始都有人。
有 m m m 个不同的学生会依次提前交卷,先从这一排走到过道上,在从过道走到前面或后面的房间里。每个提前交卷的学生有一个不满度,表示为 A × x + B × y A\times x+B\times y A×x+B×y,其中 A , B A,B A,B 是给定的常数, x x x 为经过的同学数量,由过道两侧的同学以及在过道与座位之间的同学组成(不包含自己)。 y y y 为在到达房间前房间内的人数。
你需要安排这些学生是去前面还是后面的房间,求不满度之和的最小值。
Solution
画个图:
前端
ABC||DEF
ABC||DEF
ABC||DEF
后端
暴力就是 dp
求解。
本题最关键的性质就是在确定两个房间最终分别有多少人后,可以直接算出不满度中 B × y B\times y B×y 的部分,同时第 i i i 个人去前面和去后面的人数是确定的。
设前面的房间有 i i i 个人,后面的有 m − i m-i m−i 个人,那么不满度之和的后半部分就是 B × ( i × ( i − 1 ) 2 + ( m − i ) × ( m − i − 1 ) 2 ) B\times(\dfrac{i\times(i-1)}{2}+\dfrac{(m-i)\times(m-i-1)}{2}) B×(2i×(i−1)+2(m−i)×(m−i−1))。
求经过了多少人,就先将其分为两个部分,走到过道经过多少人就直接分讨当前座位的编号,开 v i s i , j vis_{i,j} visi,j 记录第 i i i 排第 j j j 个座位上还有没有人。过道上经过的人相当于一个前缀和, s u m i sum_i sumi 表示从第 i i i 排走到教室前面经过的人数,如果在他之前过道上有人离开就实时更新,用树状数组维护。
注意如果他就是坐在过道上的,要先更新 s u m sum sum 再算值,不然会把自己也算进去。
这样我们只需要判断一个学生是去前面还是去后面,设去前面不满度为 u i u_i ui,去后面为 d i d_i di。
假设所有人都先去了前面,将每个学生的 u i − d i u_i-d_i ui−di 从大到小排序,这样选前面 k k k 个去后面肯定更优,然后枚举 k k k 的所有情况( 0 ∼ m 0\sim m 0∼m),对于每种情况算出不满度之和,然后取最小即可。
Code
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m;
long long A,B;
long long tr[100010];
bool vis[100010][8];
struct node{
long long u,d;
}a[100010];
int lowbit(int x){
return x&(-x);
}
void add(int x,int val){
for(int i=x;i<=n;i+=lowbit(i)){
tr[i]+=val;
}
}
long long query(int x){
int ans=0;
for(int i=x;i>=1;i-=lowbit(i)){
ans+=tr[i];
}
return ans;
}
void read(int &x,int &y){ //特殊读入方式
x=0;
string s;
cin>>s;
for(int i=0;i<s.size()-1;i++){ //得出排数
x=(x<<3)+(x<<1)+s[i]-'0';
}
y=s[s.size()-1]-'A'+1;
}
bool cmp(node x,node y){
return (x.u-x.d)>(y.u-y.d);
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m>>A>>B;
for(int i=1;i<=n;i++){
add(i,2);
for(int j=1;j<=6;j++){
vis[i][j]=1;
}
}
long long tmp=0;
for(int i=1;i<=m;i++){
int x,y;
read(x,y);
if(y==1) tmp+=vis[x][2]; //走到过道上要经过多少人
if(y==6) tmp+=vis[x][5];
if(y==3||y==4) add(x,-1); //在过道上就更新sum
vis[x][y]=0; //记得赋为0
a[i].u+=query(x),a[i].d+=query(n)-query(x-1); //去前面和去后面,后面减的x-1是因为这一排的sum也要算
tmp+=a[i].u; //全都去前面经过的人数
}
sort(a+1,a+1+m,cmp);
long long sum=0,ans=tmp*A+m*(m-1)/2*B; //k=0时的情况
for(int i=1;i<=m;i++){
sum+=a[i].u-a[i].d; //更新经过的人数
ans=min(ans,tmp*A-sum*A+(i*(i-1)/2)*B+((m-i)*(m-i-1)/2)*B); //记得加上B*y的部分
}
cout<<ans<<endl;
return 0;
}