【实战案例】商品推荐算法(2)

本文介绍了以用户为中心的商品推荐算法,包括如何根据用户行为和商品关联关系将商品B推荐给用户A,通过案例分享人工配置与推荐算法的ABtest效果,并探讨了基于商品关联关系的扩散选品策略。最后提到Apriori算法在实践中的考量因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2022年分享了以商品为中心的推荐算法,本篇在此基础上,介绍以用户为中心的商品推荐算法。

看过商品推荐算法(1)的朋友还记得这张图吗?不记得也没关系,我再画一遍~
它表达的正是商品推荐的逻辑本质,寻找关联关系。

接下来会讨论3个主题:
1. 如何将商品B推荐给用户A?
2. 案例分享:人工配置 VS 推荐算法 ABtest
3. 拓展应用:基于商品关联关系的扩散选品

一、如何将商品B推荐给用户A?

在商业环境中,大部分经营多商品的商城会采用推荐算法,也就是用户会点击n个商品,n可能是0,也可能是1000,这里我们仅讨论n≥1的情形(n=0采用冷启动),即:用户A访问了一系列商品A,商品A会关联出一系列的商品B,如何将商品B推荐给用户A?

在前一篇文章中,我们已经知道如何建立关系②,那接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值