目录
二次型
概念
二次型是一个关于向量的二次多项式,通常用矩阵表示。
考虑一个n维向量x = [x₁, x₂, ..., xn],对应的二次型可以表示为:
Q(x) = xᵀA𝑥
其中,xᵀ表示向量x的转置,A是一个n×n的实对称矩阵。
示例
二次型可以使用向量与矩阵相乘的形式表示
为了研究方便,二次型使用x^T^Ax的形式表示,其中,中间的矩阵A为对称矩阵
性质和特点
-
对称性:如果系数矩阵A是对称矩阵,即Aᵀ = A,那么二次型Q(x)是对称的,即Q(x) = Q(xᵀ)。
-
标准形式:通过合适的线性变换,可以将任何二次型转化为标准形式。标准形式是指二次型只包含平方项,而没有交叉项和常数项。通过正交变换可以实现这样的转化。
-
矩阵特征值:二次型的矩阵A的特征值与二次型的正负定性相关。如果A的所有特征值都大于零,则二次型是正定的;如果所有特征值都小于零,则二次型是负定的;如果特征值既有正又有负,则二次型是不定的。
-
几何意义:二次型在几何上表示为一个二次曲面或椭圆抛物面。二次型的正负定性与曲面的凸凹性和极值点的性质相关。
-
应用:二次型在优化问题、矩阵理论、统计学、物理学等领域中有广泛的应用。它们在最小二乘问题、二次规划、协方差矩阵分析、精确度矩阵等方面发挥重要作用。<