线性代数高级--二次型--特征值与特征向量--特征值分解--多元函数的泰勒展开

目录

二次型

概念

示例  

性质和特点

特征值与特征向量

概念

示例 

注意

 性质和特点

 特征值分解

注意

多元函数的泰勒展开 

回顾一元函数泰勒展开

 多元函数的泰勒展开


二次型

概念

二次型是一个关于向量的二次多项式,通常用矩阵表示。

考虑一个n维向量x = [x₁, x₂, ..., xn],对应的二次型可以表示为:

Q(x) = xᵀA𝑥

其中,xᵀ表示向量x的转置,A是一个n×n的实对称矩阵。

示例  

二次型可以使用向量与矩阵相乘的形式表示 

为了研究方便,二次型使用x^T^Ax的形式表示,其中,中间的矩阵A为对称矩阵 

性质和特点

  1. 对称性:如果系数矩阵A是对称矩阵,即Aᵀ = A,那么二次型Q(x)是对称的,即Q(x) = Q(xᵀ)。

  2. 标准形式:通过合适的线性变换,可以将任何二次型转化为标准形式。标准形式是指二次型只包含平方项,而没有交叉项和常数项。通过正交变换可以实现这样的转化。

  3. 矩阵特征值:二次型的矩阵A的特征值与二次型的正负定性相关。如果A的所有特征值都大于零,则二次型是正定的;如果所有特征值都小于零,则二次型是负定的;如果特征值既有正又有负,则二次型是不定的。

  4. 几何意义:二次型在几何上表示为一个二次曲面或椭圆抛物面。二次型的正负定性与曲面的凸凹性和极值点的性质相关。

  5. 应用:二次型在优化问题、矩阵理论、统计学、物理学等领域中有广泛的应用。它们在最小二乘问题、二次规划、协方差矩阵分析、精确度矩阵等方面发挥重要作用。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我还可以熬_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值