多元函数的二阶泰勒展开推导

本文探讨了多元函数的重合条件,即函数在某点处所有阶任意重导数相等的重要性,并详细推导了二阶展开的形式,涉及一阶偏导相等及二阶梯度一致性。通过类比一元函数的运动学概念,解释了高阶导数在确定函数行为中的作用。同时,文章强调了海森矩阵在极值点判断中的应用。
摘要由CSDN通过智能技术生成

        两个函数源自同一点,只要在这一点处,外延的所有变化都一致,那么这两个函数就是重合的。如何刻画这种外延的变化?

        多元函数受多个变量的影响,变量的变化造成函数值的变化,因此,只要变量的变化对函数值的影响一致,那么两个源自同一点的函数就完全一样。变量的变化对函数值的影响,是多重多阶的,因此,要使得两个函数一致,就要保证这种影响在任何阶任意维度都是一致的。基于此,两个源自某处的任意阶可导函数,只要在此处的任意变量任意阶任意重导数相等,那么两个函数就完全重合。这种思想对于一元函数,自然可以得到泰勒在此处展开的多项式形式。本文将讲解一下如何推导得到多元函数的二阶展开。

        不失一般性,这里假设多元函数为二元函数f=F(x,y),计算在点(a,b)处的展开。基于上述思想,展开的近似函数,都重合于展开点(a,b),一阶偏导必须相等,故一阶展开可以得到如下形式:

F(x,y)=F(a,b)+F_{x}(x-a)+F_{y}(y-b)+o(\Delta )

上述形式的一阶偏导等号两边显然是相等的,下面继续推导二阶展开。

对于二阶展开的推导,最关键的是要明确以下四个项相等:

F_{xx},F_{yy},F_{xy},F_{yx}

很多人可能会忽略掉F_{xy},F_{yx}。这里为什么同时要考虑这两项,是因为变量x,y的变化,在二阶的角度,同时也会影响到一阶的F_{x},F_{y},因此如果忽略上述两项,没有保证这两项相等,那么随着领域变大,累计的变化会使得F_{x},F_{y}发生偏离,不再相等,从而函数值也会随之发生偏离,不再相等。所以,这里在对下一阶进行展开的时候,要考虑的是变量变化对当前阶所有因子的影响要相等。

        从一元函数的角度,如果将函数图像理解成时间位移区间,那么两个函数曲线一致,意味着某一点开始,其速度要相等、速度的变化程度(加速度)要相等、加速度的变化程度(加速度的加速度)要相等...,这样就意味着两种位移是完全一致的,而这实际上就对应着各阶导数。同样的,对于多元函数,各个变量的一阶偏导相等、各个变量的一阶偏导随着变量变化的程度(一阶偏导的梯度)相等、一阶偏导梯度中各个分量的梯度相等...,以此递归。

        因此,对于上述二元函数,在二阶展开时,要让各个变量的一阶偏导的梯度相等,因为F_{x}的梯度是(F_{xx},F_{xy})F_{y}的梯度是(F_{yx},F_{yy}),所以得到上述的四项,等号两边需要相等,基于此推导各项系数,得到如下二阶展开:

F(x,y)=F(a,b)+F_{x}(x-a)+F_{y}(y-b)+\frac{1}{2}F_{xx}(x-a)^{2}+\frac{1}{2}F_{yy}(y-b)^{2}+\frac{1}{2}F_{xy}(x-a)(y-b)+\frac{1}{2}F_{yx}(x-a)(y-b)+o(\Delta ^{2})=F(a,b)+F_{x}(x-a)+F_{y}(y-b)+\frac{1}{2}\begin{pmatrix} x-a\\ y-b \end{pmatrix}\begin{pmatrix} F_{xx} & F_{xy}\\ F_{yx}& F_{yy} \end{pmatrix}\begin{pmatrix} x-a & y-b \end{pmatrix}+o(\Delta ^{2})=F(a,b)+F_{x}(x-a)+F_{y}(y-b)+\frac{1}{2}\begin{pmatrix} x-a\\ y-b \end{pmatrix}H\begin{pmatrix} x-a & y-b \end{pmatrix}+o(\Delta ^{2})

要强调一下的是,这里各项偏导都是在点(a,b)处的偏导,因此是常数。上述H矩阵实际上就是海森矩阵(Hessian Matrix)。

         如果我们想进一步三阶展开,那么就需要考虑F_{xx},F_{yy},F_{xy},F_{yx}这四项的梯度,便会在三阶展开中增加8项,以此类推,n阶展开就相比n-1阶多出2^n项。因此,对于多元函数的泰勒展开,是相当复杂的,很多问题一般我们展开到二阶就足够了。

        基于此展开,我们看到展开项中有H矩阵。我们一般利用H矩阵的正(负)定性判断极小(大)值点的原有,从这里的展开就很自然了。因为当H为正定时,那么展开处的邻域都是更大的值,反之就是极小值点。如果H为0,那么无法判断,需要更高阶展开进行判断,或者既不是正定也不是负定(鞍点),那么就不是极小值点也不是极大值点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值