2.5 手写数字识别之损失函数
第2.4节我们尝试通过更复杂的模型(经典的全连接神经网络和卷积神经网络),提升手写数字识别模型训练的准确性。本节我们继续将“横纵式”教学法从横向展开,如图1所示,探讨损失函数的优化对模型训练效果的影响。
图1:“横纵式”教学法 — 损失函数优化
损失函数是模型优化的目标,用于在众多的参数取值中,识别最理想的取值。损失函数的计算在训练过程的代码中,每一轮模型训练的过程都相同,分如下3步:1)先根据输入数据正向计算预测输出;2)再根据预测值和真实值计算损失;3)最后根据损失反向传播梯度并更新参数。
2.5.1 分类任务的损失函数
在第2.4节我们复用了房价预测模型的损失函数:均方误差。从预测效果来看,虽然损失不断下降,模型的预测值逐渐逼近真实值,但模型的最终效果不够理想。究其根本,不同的深度学习任务需要有各自适宜的损失函数。我们以房价预测和手写数字识别两个任务为例,详细剖析其中的缘由有如下3点:
(1)房价预测是回归任务,而手写数字识别是分类任务,使用均方误差作为分类任务的损失函数存在逻辑和效果上的缺欠。
(2)房价可以是大于0的任何浮点数,而手写数字识别的输出只可能是0~9之间的10个整数,相当于一种标签。
(3)在房价预测的案例中,由于房价本身是一个连续的实数值,因此以模型输出的数值和真实房价差距作为损失函数是符合道理的。但对于分类问题,真实结果是分类标签,而模型输出是实数值,导致以两者相减作为损失不具备物理含义。
那么,什么是分类任务的合理输出呢?分类任务本质上是“某种特征组合下的分类概率”,下面以一个简单案例说明,如图2所示。
图2:观测数据和背后规律之间的关系
在本案例中,医生根据肿瘤大小xx作为肿瘤性质yy的参考判断(判断的因素有很多,肿瘤大小只是其中之一),那么我们观测到该模型判断的结果是xx和yy的标签(1为恶性,0为良性)。而这个数据背后的规律是不同大小的肿瘤,属于恶性肿瘤的概率。观测数据是真实规律抽样下的结果,分类模型应该拟合这个真实规律,输出属于该分类标签的概率。
2.5.2 Softmax函数
如果模型能输出10个标签的概率,对应真实标签的概率输出尽可能接近100%,而其他标签的概率输出尽可能接近0%,且所有输出概率之和为1。这是一种更合理的假设!与此对应,真实的标签值可以转变成一个10维度的one-hot向量,在对应数字的位置上为1,其余位置为0,比如标签“6”可以转变成[0,0,0,0,0,0,1,0,0,0]。
为了实现上述思路,需要引入Softmax函数,它可以将原始输出转变成对应标签的概率,公式如下,其中CC是标签类别个数。
从公式的形式可见,每个输出的范围均在0~1之间,且所有输出之和等于1,这是这种变换后可被解释成概率的基本前提。对应到代码上,需要在前向计算中,对全连接网络的输出层增加一个Softmax运算,outputs = F.softmax(outputs)
。
图3是一个三个标签的分类模型(三分类)使用的Softmax输出层,从中可见原始输出的三个数字3、1、-3,经过Softmax层后转变成加和为1的三个概率值0.88、0.12、0。
图3:网络输出层改为softmax函数
上文解释了为何让分类模型的输出拟合概率的原因,但为何偏偏用Softmax函数完成这个职能? 下面以二分类问题(只输出两个标签)进行原理的探讨。
对于二分类问题,使用两个输出接入Softmax作为输出层,等价于使用单一输出接入Sigmoid函数。如图4所示,利用两个标签的输出概率之和为1的条件,Softmax输出0.6和0.4两个标签概率,从数学上等价于输出一个标签的概率0.6。
图4:对于二分类问题,等价于单一输出接入Sigmoid函数
图5是肿瘤大小和肿瘤性质的数据图。从图中可发现,往往尺寸越大的肿瘤几乎全部是恶性,尺寸极小的肿瘤几乎全部是良性。只有在中间区域,肿瘤的恶性概率会从0逐渐到1(绿色区域),这种数据的分布是符合多数现实问题的规律。如果我们直接线性拟合,相当于红色的直线,会发现直线的纵轴0-1的区域会拉的很长,而我们期望拟合曲线0-1的区域与真实的分类边界区域重合。那么,观察下Sigmoid的曲线趋势可以满足我们对个问题的一切期望,它的概率变化会集中在一个边界区域,有助于模型提升边界区域的分辨率。
图5:使用Sigmoid拟合输出可提高分类模型对边界的分辨率
这就类似于公共区域使用的带有恒温装置的热水器温度阀门,如图6所示。由于人体适应的水温在34度-42度之间,我们更期望阀门的水温条件集中在这个区域,而不是在0-100度之间线性分布。
图6:热水器水温控制
2.5.2 交叉熵函数
在模型输出为分类标签的概率时,直接以标签和概率做比较也不够合理,人们更习惯使用交叉熵误差作为分类问题的损失衡量。交叉熵损失函数的设计是基于最大似然思想:最大概率得到观察结果的假设是真的。如何理解呢?举个例子来说,如图7所示。有两个外形相同的盒子,甲盒中有99个白球,1个蓝球;乙盒中有99个蓝球,1个白球。一次试验取出了一个蓝球,请问这个球应该是从哪个盒子中取出的?
图7:体会最大似然的思想
相信大家简单思考后均会得出更可能是从乙盒中取出的,因为从乙盒中取出一个蓝球的概率更高(P(D∣h)),所以观察到一个蓝球更可能是从乙盒中取出的(P(h∣D))。D是观测的数据,即蓝球白球;h是模型,即甲盒乙盒。这就是贝叶斯公式所表达的思想:
P(h∣D)∝P(h)⋅P(D∣h)
说明:
自然对数的函数曲线可由如下代码实现。
In [2]
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0.01,1,0.01)
y = np.log(x)
plt.title("y=log(x)")
plt.xlabel("x")
plt.ylabel("y")
plt.plot(x,y)
plt.show()
plt.figure()
<Figure size 432x288 with 1 Axes>
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
如自然对数的图形所示,当x等于1时,y为0;随着x向0靠近,y逐渐变小。因此,正确解标签对应的输出越大,交叉熵的值越接近0;当输出为1时,交叉熵误差为0。反之,如果正确解标签对应的输出越小,则交叉熵的值越大。
2.5.3 交叉熵函数的代码实现
在手写数字识别任务中,通过如下修改就可以将在现有模型的损失函数替换成交叉熵:
1)网络定义部分,将输出层改成“输出十个标签的概率”的模式。
2)在训练过程部分,将损失函数从均方误差换成交叉熵。
在数据处理部分,float32改为int64:
In [3]
from data_process import get_MNIST_dataloader
train_loader, test_loader = get_MNIST_dataloader()
在网络定义部分,需要修改输出层结构,代码如下所示。
- 从:self.fc = Linear(in_features=980, out_features=1)
- 到:self.fc = Linear(in_features=980, out_features=10)
In [4]
# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):
def __init__(self):
super(MNIST, self).__init__()
# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
# 定义池化层,池化核的大小kernel_size为2,池化步长为2
self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
# 定义池化层,池化核的大小kernel_size为2,池化步长为2
self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
# 定义一层全连接层,输出维度是10
self.fc = Linear(in_features=980, out_features=10)
# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
# 卷积层激活函数使用Relu
def forward(self, inputs):
x = self.conv1(inputs)
x = F.relu(x)
x = self.max_pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.max_pool2(x)
x = paddle.reshape(x, [x.shape[0], 980])
x = self.fc(x)
return x
修改计算损失的函数,从均方误差(常用于回归问题)到交叉熵误差(常用于分类问题),代码如下所示。
- 从:loss = paddle.nn.functional.square_error_cost(predict, label)
- 到:loss = paddle.nn.functional.cross_entropy(predict, label)
In [5]
def evaluation(model, datasets):
model.eval()
acc_set = list()
for batch_id, data in enumerate(datasets()):
images, labels = data
images = paddle.to_tensor(images)
labels = paddle.to_tensor(labels)
pred = model(images) # 获取预测值
acc = paddle.metric.accuracy(input=pred, label=labels)
acc_set.extend(acc.numpy())
# #计算多个batch的准确率
acc_val_mean = np.array(acc_set).mean()
return acc_val_mean
In [6]
#仅修改计算损失的函数,从均方误差(常用于回归问题)到交叉熵误差(常用于分类问题)
def train(model):
model.train()
#调用加载数据的函数
# train_loader = load_data('train')
# val_loader = load_data('valid')
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
EPOCH_NUM = 10
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_loader()):
#准备数据
images, labels = data
images = paddle.to_tensor(images)
labels = paddle.to_tensor(labels)
#前向计算的过程
predicts = model(images)
#计算损失,使用交叉熵损失函数,取一个批次样本损失的平均值
loss = F.cross_entropy(predicts, labels)
avg_loss = paddle.mean(loss)
#每训练了200批次的数据,打印下当前Loss的情况
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
#后向传播,更新参数的过程
avg_loss.backward()
# 最小化loss,更新参数
opt.step()
# 清除梯度
opt.clear_grad()
# acc_train_mean = evaluation(model, train_loader)
# acc_val_mean = evaluation(model, val_loader)
# print('train_acc: {}, val acc: {}'.format(acc_train_mean, acc_val_mean))
#保存模型参数
paddle.save(model.state_dict(), 'mnist.pdparams')
#创建模型
model = MNIST()
#启动训练过程
train(model)
W0622 19:15:00.799525 101 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 8.0, Driver API Version: 11.2, Runtime API Version: 11.2
W0622 19:15:00.803115 101 device_context.cc:465] device: 0, cuDNN Version: 8.2.
epoch: 0, batch: 0, loss is: [2.9631767]
epoch: 0, batch: 200, loss is: [0.28771558]
epoch: 0, batch: 400, loss is: [0.17397963]
epoch: 0, batch: 600, loss is: [0.1328078]
epoch: 0, batch: 800, loss is: [0.22312419]...
epoch: 9, batch: 0, loss is: [0.04752279]
epoch: 9, batch: 200, loss is: [0.02498975]
epoch: 9, batch: 400, loss is: [0.0057624]
epoch: 9, batch: 600, loss is: [0.0295256]
epoch: 9, batch: 800, loss is: [0.06521191]
虽然上述训练过程的损失明显比使用均方误差算法要小,但因为损失函数量纲的变化,我们无法从比较两个不同的损失函数得出谁更加优秀。怎么解决这个问题呢?我们可以回归到问题的本质,谁的分类准确率更高来判断。在后面介绍完计算准确率和作图的内容后,读者可以自行测试采用不同损失函数下,模型准确率的高低。
至此,大家阅读论文中常见的一些分类任务模型图就清晰明了,如全连接神经网络、卷积神经网络,在模型的最后阶段,都是使用Softmax进行处理。
图8:常见的分类任务模型图
由于我们修改了模型的输出格式,因此使用模型做预测时的代码也需要做相应的调整。从模型输出10个标签的概率中选择最大的,将其标签编号输出。
In [8]
from PIL import Image
# 读取一张本地的样例图片,转变成模型输入的格式
def load_image(img_path):
# 从img_path中读取图像,并转为灰度图
im = Image.open(img_path).convert('L')
im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)
# 图像归一化
im = 1.0 - im / 255.
return im
# 定义预测过程
model = MNIST()
params_file_path = 'mnist.pdparams'
img_path = 'work/example_0.jpg'
# 加载模型参数
param_dict = paddle.load(params_file_path)
model.load_dict(param_dict)
# 灌入数据
model.eval()
tensor_img = load_image(img_path)
#模型反馈10个分类标签的对应概率
results = model(paddle.to_tensor(tensor_img))
#取概率最大的标签作为预测输出
lab = np.argsort(results.numpy())
print("本次预测的数字是: ", lab[0][-1])
本次预测的数字是: 0
作业 2-2
预习下对于计算机视觉任务,有哪些常见的卷积神经网络(如LeNet-5、AlexNet等)?