残差网络(ResNet)
随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要,更重要的是设计网络的能力,在这种网络中,添加层会使网络更具表现力,为了取得质的突破,我们需要一些数学基础知识
1 - 函数类
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eNqpMTeq-1663681761484)(images/e1.png)]
2 - 残差块
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Z9K1lz4m-1663681761484)(images/e2.png)]
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Residual(nn.Module):
def __init__(self,input_channels,num_channels,use_1x1conv=False,strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1,stride=strides)
self.conv2 = nn.Conv2d(num_channels,num_channels,kernel_size=3,padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels,num_channels,kernel_size=1,stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self,X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wu1ffNvC-1663681761485)(images/e3.png)]
blk = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = blk(X)
Y.shape
torch.Size([4, 3, 6, 6])
我们也可以在增加输出通道数的同时,减半输出的高和宽
blk = Residual(3,6,use_1x1conv=True,strides=2)
blk(X).shape
torch.Size([4, 6, 3, 3])
3 - ResNet模型
ResNet的前两层跟之前介绍的GoogLeNet中的一样:在输出通道数为64、步幅为2的7 * 7卷积层后,接步幅为2的3 * 3的最大汇聚层。不同之处在于ResNet每个卷积层后增加了批量规范化层
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
nn.BatchNorm2d(64),nn.ReLU(),
nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
GoogLeNet在后面接了4个由Inception块组成的模块。ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。第一个模块的通道数同输入通道数一致,由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高个宽。之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半
下面我们来实现这个模块。注意,我们对第一个模块做了特别处理
def resnet_block(input_channels,num_channels,num_residuals,first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(input_channels,num_channels,use_1x1conv=True,strides=2))
else:
blk.append(Residual(num_channels,num_channels))
return blk
接着在ResNet加入所以残差块,这里每个模块使用2个残差块
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出
net = nn.Sequential(b1,b2,b3,b4,b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(),nn.Linear(512,10))
每个模块有4个卷积层(不包括恒等映射的1 * 1卷积层)。加上第一个7 * 7卷积层和最后一个全连接层,共有18层。因此,这个字模型通常被称为ResNet-18。通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。虽然ResNet的注意架构跟GoogLeNet类似,但ResNet架构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用,图7.6.4描述了完整的ResNet-18
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vsr1V5dt-1663681761485)(images/e4.png)]
X = torch.rand(size=(1,1,224,224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape: torch.Size([1, 64, 56, 56])
Sequential output shape: torch.Size([1, 64, 56, 56])
Sequential output shape: torch.Size([1, 128, 28, 28])
Sequential output shape: torch.Size([1, 256, 14, 14])
Sequential output shape: torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape: torch.Size([1, 512, 1, 1])
Flatten output shape: torch.Size([1, 512])
Linear output shape: torch.Size([1, 10])
4 - 训练模型
同之前一样,我们在Fashion-MNIST数据集上训练ResNet
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.009, train acc 0.998, test acc 0.923
2399.0 examples/sec on cuda:0
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y3GJUle7-1663681761485)(https://yingziimage.oss-cn-beijing.aliyuncs.com/img/202209202140394.svg)]
5 - 小结
- 学习嵌套函数(nested function)是训练神经网络的理想情况,在深层神经网络中,学习另一层作为恒等映射(identity function)较容易(尽管这是一个极端的情况)
- 残差映射可以更容易地学习同一函数,例如将权重层中的参数近似为零
- 利用残差块(residual blocks)可以训练出一个有效的深层神经网络,输入可以通过层间的残余连接更快地向前传播
- 残差网络(ResNet)对随后的深层神经网络设计产生了深远影响