大学生人工智能挑战赛—智慧零售 从目标检测到算法落地

本文介绍了作者在大学生人工智能挑战赛中,利用YOLOX模型进行目标检测,并通过TensorRT优化实现算法落地的过程。从数据集准备、模型训练、模型转换到C++代码改写,详细阐述了每个步骤的操作。最终,模型不仅能在图像上运行,还计划扩展到摄像头实时检测。
摘要由CSDN通过智能技术生成

文章目录

前言

这是最近的一次作业,试试本科竞赛内容应该没啥大问题吧正好水一篇博客.

image-20220512221829274

首先下载数据集,提取码 wwsj

查看数据集给出的是json格式,训练集和测试集有标注(共110张),其余还有无标注的需要自己手工标注。但是既然只是作业又不是去参加比赛,那就直接当小数据量样本训练.

image-20220512222354898

image-20220512222407851

构思

目前数据量较小,而且很明显是一个目标检测任务,并且涉及到算法落地的问题,所以开始之前一定要理清思路,想清楚每一步应该怎么做.

  • 找到一个合适的目标检测模型,基于这个小样本数据集进行训练,得到一个效果较好的模型
  • 将python训练得到的模型进行转换,转为onnx以及tensorRT等形式,方便后续算法落地
  • 有了转换后的模型,进行c++改写模型加载以及检测部分代码

既然是快速实现一次作业,那必然要“站在巨人的肩膀上”,所以使用的大部分都是网上的开源代码.

开始动手

1.数据集准备

从网盘下载数据,因为数据量很小,所以train和test全部拿来训练,一共110张图片.然后把数据集转为voc格式

#将所给的数据转为voc数据集格式
import os
import numpy as np
import codecs
import json
from glob import glob
import cv2
import shutil
from sklearn.model_selection import train_test_split

# 1.标签路径
labelme_path = "./2022 年(第 15 届)中国大学生计算机设计大赛人工智能挑战赛-智慧零售赛项数据集/TrainingDataset/"  # 使用labelme打的标签(包含每一张照片和对应json格式的标签)
saved_path = "./VOCdevkit/VOC2007/"  # 保存路径

# 2.voc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值