深度解析:探秘输出通道(维度)的变化与卷积核的密切关联

一文带你了解——输出通道(维度)是怎么改变的?和卷积核有什么关系?

相信一定同学很困惑,通道数量是怎么改变的,为什么我输入的是3通道的图片,最后变成了很多通道。192变成64是怎么变化的?

b3的第一个inception块

下面就为大家讲解其中的原理。

当输入包含多个通道时,需要构造一个与输入数据具有相同输入通道数的卷积核,以便与输入数据进行互相关运算。假设输入的通道数为c,那么卷积核的输入通道数也需要为c。如果卷积核的窗口形状是h×w,那么当c=1时,我们可以把卷积核看作形状为ℎ×w的二维张量。

然而,当c>1时,我们卷积核的每个输入通道将包含形状为ℎ×w的张量。将这些张量c连结在一起可以得到形状为c×ℎ×w的卷积核。由于输入和卷积核都有c个通道,我们可以对每个通道输入的二维张量和卷积核的二维张量进行互相关运算,再对通道求和(将c的结果相加)得到二维张量。这是多通道输入和多输入通道卷积核之间进行二维互相关运算的结果。

下图中,我们演示了一个具有两个输入通道的二维互相关运算的示例。阴影部分是第一个输出元素以及用于计算这个输出的输入和核张量元素:(1×1+2×2+4×3+5×4)+(0×0+1×1+3×2+4×3)=56。

在这里可以看到,卷积核的维度需要和输入通道的维度相同,此外卷积核的组数决定了输出的通道数量,上面是有一组卷积核,因此输出通道数为1

为了加深理解,我们实现一下多输入通道互相关运算。 简而言之,我们所做的就是对每个通道执行互相关操作,然后将结果相加。

import torch
from d2l import torch as d2l

def corr2d_multi_in(X, K):
    # 先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起
    return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

我们可以构造与上图中的值相对应的输入张量X和核张量K,以验证互相关运算的输出。

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
               [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])

corr2d_multi_in(X, K)
# output
tensor([[ 56.,  72.],
        [104., 120.]])

到目前为止,不论有多少输入通道,我们还只有一个输出通道。然而,每一层有多个输出通道是至关重要的。在最流行的神经网络架构中,随着神经网络层数的加深,我们常会增加输出通道的维数,通过减少空间分辨率以获得更大的通道深度。直观地说,我们可以将每个通道看作对不同特征的响应。而现实可能更为复杂一些,因为每个通道不是独立学习的,而是为了共同使用而优化的。因此,多输出通道并不仅是学习多个单通道的检测器。

用ci和co分别表示输入和输出通道的数目,并让ℎ和w为卷积核的高度和宽度。为了获得多个通道的输出,我们可以为每个输出通道创建一个形状为ci×ℎ×w的卷积核张量,这样卷积核的形状是ci×co×ℎ×w。在互相关运算中,每个输出通道先获取所有输入通道,再以对应该输出通道的卷积核计算出结果。

如下所示,我们实现一个计算多个通道的输出的互相关函数

def corr2d_multi_in_out(X, K):
    # 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。
    # 最后将所有结果都叠加在一起
    return torch.stack([corr2d_multi_in(X, k) for k in K], 0)

通过将核张量KK+1K中每个元素加1)和K+2连接起来,构造了一个具有3个输出通道的卷积核

K = torch.stack((K, K + 1, K + 2), 0)
K.shape
# output
torch.Size([3, 2, 2, 2])

下面,我们对输入张量X与卷积核张量K执行互相关运算。现在的输出包含3个通道,第一个通道的结果与先前输入张量X和多输入单输出通道的结果一致

corr2d_multi_in_out(X, K)
# output
tensor([[[ 56.,  72.],
         [104., 120.]],

        [[ 76., 100.],
         [148., 172.]],

        [[ 96., 128.],
         [192., 224.]]])
1×1卷积

1×1卷积,即ℎ=w=1,看起来似乎没有多大意义。 毕竟,卷积的本质是有效提取相邻像素间的相关特征,而1×1卷积显然没有此作用。 尽管如此,1×1仍然十分流行,经常包含在复杂深层网络的设计中。下面,让我们详细地解读一下它的实际作用。

因为使用了最小窗口,1×1卷积失去了卷积层的特有能力——在高度和宽度维度上,识别相邻元素间相互作用的能力。 其实1×1卷积的唯一计算发生在通道上。

展示了使用1×1卷积核与3个输入通道和2个输出通道的互相关计算。 这里输入和输出具有相同的高度和宽度,输出中的每个元素都是从输入图像中同一位置的元素的线性组合。 我们可以将1×1卷积层看作在每个像素位置应用的全连接层,以ci个输入值转换为co个输出值。 因为这仍然是一个卷积层,所以跨像素的权重是一致的。 同时,1×1卷积层需要的权重维度为co×ci,再额外加上一个偏置。

在这里可以看到,卷积核的数量有两组,尽管每组都是1*1的,但还是输出了两个通道,因此输出通道的个数是和卷积核的组数相关的,也说明一个标准的卷积核是四维的

下面,我们使用全连接层实现1×1卷积。 请注意,我们需要对输入和输出的数据形状进行调整

def corr2d_multi_in_out_1x1(X, K):
    c_i, h, w = X.shape
    c_o = K.shape[0]
    X = X.reshape((c_i, h * w))
    K = K.reshape((c_o, c_i))
    # 全连接层中的矩阵乘法
    Y = torch.matmul(K, X)
    return Y.reshape((c_o, h, w))

当执行1×1卷积运算时,上述函数相当于先前实现的互相关函数corr2d_multi_in_out。让我们用一些样本数据来验证这一点。

X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))

Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6

 因此输出通道的个数是和卷积核的组数相关的

如果你还不理解的,欢迎留言,我会尽力为大家解答,祝大家paper多多,offer多多

  • 27
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
《Boost程序库深度解析C++准标准库》是一本详细介绍Boost程序库的书籍。Boost是一个开源的C++程序库集合,提供了许多重要的功能和工具,帮助开发者更高效地开发C++应用程序。 《Boost程序库深度解析C++准标准库》首先介绍了Boost程序库的概念、历史和发展。然后,逐一介绍了Boost的各个模块和组件,包括: 1. 智能指针:详细介绍了shared_ptr、scoped_ptr和weak_ptr等智能指针的使用方法和原理,帮助开发者更好地管理资源和避免内存泄漏。 2. 容器:介绍了各种常用的数据容器,如vector、map、set等,并介绍了它们在Boost中的实现和扩展功能。 3. 函数对象和算法:介绍了Boost中的函数对象和算法库,其中包含了丰富的算法和函数对象,方便开发者进行各种数据处理和计算操作。 4. 正则表达式:详细介绍了Boost中正则表达式的使用,包括基本语法、匹配规则和替换操作等。 5. 多线程和并发:介绍了Boost中多线程和并发编程的相关模块,包括线程、互斥锁、条件变量等,帮助开发者编写高效的并发程序。 6. 其他模块:还介绍了Boost中的其他模块,如日期时间、解析库、文件系统等,帮助开发者完成更多的任务和功能。 《Boost程序库深度解析C++准标准库》不仅介绍了Boost的具体用法,还深入解析了其实现原理和设计思想,帮助开发者更好地理解和使用Boost程序库。对于想要提高自己的C++编程技能和加快开发效率的开发者来说,这本书是一本非常实用的参考资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值