YOLOv5改进 | 注意力机制 | 理解全局和局部信息的SE注意力机制

在深度学习目标检测领域,YOLOv5成为了备受关注的模型之一。本文给大家带来的是能够理解全局和局部信息的SE注意力机制。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。


专栏地址YOLOv5改进+入门——持续更新各种有效涨点方法

目录

1. 原理

2.YOLOv5添加SE模块

2.1 SE模块代码

2.2 新增yaml文件

2.3 注册模块

2.4 执行程序

3.总结


1. 原理

论文地址Squeeze-and-Excitation Networks点击即可跳转

官方代码SENet官方代码地址点击即可跳转

对于CNN网络来说,核心计算是卷积算子,通过卷积核从输入特征图学习到新特征图。从本质上讲,卷积是对一个局部区域进行特征融合,这包括空间上(H和W维度)以及通道间(C维度)的特征融合。

对于卷积操作,很大一部分改进工作是提高感受野,即空间上融合更多特征,或者是提取多尺度空间信息,如Inception网络的多分支结构。对于channel维度的特征融合,卷积操作基本上默认对输入特征图的所有channel进行融合。而MobileNet网络中的组卷积(Group Convolution)和深度可分离卷积(Depthwise Separable Convolution)对channel进行分组也主要是为了使模型更加轻量级,减少计算量。

SENet网络的创新点在于关注channel之间的关系,希望模型可以自动学习到不同channel特征的重要程度。为此,SENet提出了Squeeze-and-Excitation (SE)模块,如下图所示

SE模块首先对卷积得到的特征图进行Squeeze操作,得到channel级的全局特征(SENet提出Squeeze操作,将一个channel上整个空间特征编码为一个全局特征,采用global average pooling来实现),然后对全局特征进行Excitation操作(这里采用sigmoid形式的gating机制),学习各channel间的关系,得到不同channel的权重,最后乘以原来的特征图得到最终特征。本质上,SE模块是在channel维度上做attention或者gating操作,这种注意力机制让模型可以更加关注信息量最大的channel特征,而抑制不重要的channel特征。另外一点是SE模块是通用的,意味着其可以嵌入到现有的网络架构中。

2.YOLOv5添加SE模块

2.1 SE模块代码

关键步骤一:将下面代码添加到 yolov5/models/common.py中

class AdaptiveAvgPool2d(_AdaptiveAvgPoolNd):

    def forward(self, input: Tensor) -> Tensor:
        return F.adaptive_avg_pool2d(input, self.output_size)

class SE(nn.Module):
    def __init__(self, c1, c2, ratio=16):
        super(SE, self).__init__()
        # c*1*1
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.l1 = nn.Linear(c1, c1 // ratio, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.l2 = nn.Linear(c1 // ratio, c1, bias=False)
        self.sig = nn.Sigmoid()

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avgpool(x).view(b, c)
        y = self.l1(y)
        y = self.relu(y)
        y = self.l2(y)
        y = self.sig(y)
        y = y.view(b, c, 1, 1)
        return x * y.expand_as(x)

SE类是一种用于卷积神经网络中的注意力机制模块,旨在增强网络对输入特征的关注。它通过学习得到每个通道的权重,以自适应的方式调整特征图,从而提升网络性能。

构成部分:
1. Squeeze(压缩)阶段:
   通过全局平均池化操作将特征图压缩为一个向量,以捕获每个通道的全局特征信息。
   然后通过一个或多个全连接层对压缩后的特征向量进行变换,以获得通道相关的表示。

2. Excitation(激励)阶段:
   使用激活函数(通常是ReLU)对变换后的特征进行非线性映射,以增强模型的表达能力。
   再通过一个或多个全连接层对特征进行进一步的变换,以生成通道注意力权重。

3. Scale(缩放)阶段:
   使用Sigmoid函数将通道注意力权重归一化到0到1之间,以表示每个通道的重要性。
   将归一化后的权重乘以原始特征图,以对特征进行加权。

流程:

1. 接收输入张量x,该张量的形状为(batch_size, channels, height, width)。
2. 通过全局平均池化操作将每个通道的特征进行压缩,得到一个大小为(batch_size, channels)的全局特征向量。
3. 将全局特征向量通过一个或多个全连接层进行变换,得到每个通道的权重。
4. 对权重进行非线性变换(通常是ReLU激活函数),以增强模型的表达能力。
5. 再次通过全连接层对特征进行变换,得到每个通道的注意力权重。
6. 使用Sigmoid函数将注意力权重归一化到0到1之间,表示每个通道的重要性。
7. 将归一化后的注意力权重与原始特征图相乘,得到加权后的特征表示。
8. 返回加权后的特征张量。

目的:
SE模块的主要目的是通过自适应地调整通道的注意力权重,使模型能够更有效地捕获输入特征的重要信息,从而提高模型的性能和泛化能力。

SE类的实现包括两个主要部分:Squeeze阶段和Excitation阶段,它们共同作用于输入特征,以产生加权后的特征表示,从而增强了模型的表达能力和性能。

2.2 新增yaml文件

关键步骤二:在 /yolov5/models/ 下新建文件 yolov5_se.yaml文件并将下面代码复制进去

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SE, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 10
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 14

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 15], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 21 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 24 (P5/32-large)

   [[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

 温馨提示:因为本文只是对yolov5s基础上添加SE模块,如果要对yolov5n/l/m/x进行添加则只需要修改对应的depth_multiple 和 width_multiple。


2.3 注册模块

关键步骤三:在yolov5/models/yolo.py中注册

 大概在250行左右添加 ‘SE’

2.4 执行程序

在train.py中,将cfg的参数路径设置为yolov5_se.yaml的路径,如下图所示

 运行程序,如果出现下面的内容则说明添加成功🚀

我修改后的代码:链接: https://pan.baidu.com/s/1JPlryyUcPKpFNAtk5bTJzQ?pwd=8k5c 提取码: 8k5c

3.总结

SE(Squeeze-and-Excitation)模块是一种用于增强卷积神经网络特征表示的重要机制。这一模块通过引入通道注意力机制,使得网络能够自适应地调整每个通道的重要性,从而提高了模型的性能和泛化能力。

SE模块包含两个关键阶段:Squeeze阶段和Excitation阶段。在Squeeze阶段,通过全局平均池化操作将每个通道的特征压缩为一个全局特征向量,以捕获全局特征信息。在Excitation阶段,通过一系列线性变换和非线性激活函数,计算每个通道的注意力权重。这些权重用于调整原始特征图中每个通道的重要性,使得网络能够更加关注对任务有用的特征。

SE模块的工作流程如下:首先,接收输入特征张量;然后,在Squeeze阶段,通过全局平均池化操作将每个通道的特征压缩为一个全局特征向量;接着,在Excitation阶段,通过线性变换和激活函数计算每个通道的注意力权重;最后,使用这些注意力权重对原始特征进行加权,并返回加权后的特征表示。

SE模块的主要目的是通过自适应地调整每个通道的注意力权重,增强模型对输入特征的表达能力。这使得模型能够更好地捕获输入数据中的有用信息,从而提高了模型的性能和泛化能力。SE模块可以轻松地集成到各种卷积神经网络结构中,例如ResNet、Inception等,以提升它们在图像分类、目标检测、语义分割等任务中的表现。

  • 13
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值