二分法、牛顿法、弦截法三种方程求根

一、实验目的

(1)学会二分法、牛顿法、弦截法三种方程求根的编程与应用。

(2)掌握方程求根的最基本、常用的运算方法和理论。

(3)掌握用图形方式来演示三种算法的方程求解,并体会它们各自不同的特点及收敛速率。

二、实验内容

求方程f(x)=x-2 sin(x)=0的非零根,按适当的比例在屏幕上画出f(x)的函数曲线以及根在x轴上的逼近过程。

三、算法设计

3.1 整体流程

。。。。

3.2 二分法

。。。。

3.3 牛顿法

1.设定最大迭代次数,以防止可能的无限循环;

2.初始化根值为x0,并将根值添加到x_steps数组中;

3.进行最多max_iter次迭代:

3.1计算f在当前根值处的值f_val和df在当前根值处的值df_val;

3.2如果df_val的绝对值小于eps(一个很小的正数),则抛出错误,因为无法继续迭代;

3.3更新根值root为当前根值减去f_val除以df_val;

3.4将新的根值添加到x_steps数组中;

3.5如果f_val的绝对值小于precision,则停止迭代。

4.返回求解得到的根root和每次迭代过程中的根的值x_steps。

3.4 弦截法

。。。。

四、运行结果及分析

调用上述三个函数,成功在图形界面窗口上绘制出来这三种算法的方程求根过程如下图:

图 8方程求根

分析:。。。。。。。。。。。

五、小结

。。。。

欲取完整报告某闲某与搜索用户脆脆鲨嘞查看,感谢支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

42341352315125115

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值