YOLO(You Only Look Once)是一种实时目标检测算法,它能够在图像中同时检测出多个目标并给出它们的位置和类别。YOLO将目标检测问题转化为一个回归问题,通过一个单一的CNN网络对整个图像进行前向传播,并输出目标的边界框和类别。
YOLOv2是YOLO的改进版,它在YOLO的基础上做了一些改进。首先,YOLOv2使用了更深的网络,即Darknet-19,来提高检测的精度。其次,YOLOv2引入了多尺度训练和预测,即在不同尺度下训练和预测检测框,以提高对不同大小目标的检测能力。此外,YOLOv2使用了Anchor Boxes来预测目标的边界框,而不是使用固定的候选框,这使得模型能够检测出更好的目标边界框。YOLOv2在速度和准确度上都有一定的提升。
YOLOv3是YOLO的最新版本,它在YOLOv2的基础上进行了进一步的改进。YOLOv3同样使用了更深的网络,即Darknet-53,来提高检测的精度。此外,YOLOv3引入了FPN(Feature Pyramid Network)结构来改善网络的感知能力,以提高对小目标的检测能力。此外,YOLOv3使用了更细粒度的Anchor Boxes来预测目标的边界框,使得模型能够更准确地捕捉不同大小目标的细节。YOLOv3在精度上有了显著的提升,同时保持了较高的检测速度。
总而言之,YOLOv2和YOLOv3是YOLO目标检测算法的改进版,它们在网络结构、训练策略和目标预测等方面进行了改进,以提高检测的准确度和速度。