遥感和无人机图像去雾:基于深度学习、先验和混合方法的综述的无监督去雾模型总结

一、什么是无监督去雾模型?

1、 定义

是指无需成对的雾化图像(hazy image)和无雾图像(clean image)作为训练数据,通过未标注的数据或特定的先验知识,直接从输入的雾化图像中学习去雾映射关系的模型。这种方法在标注数据稀缺的情况下尤为重要,广泛应用于真实场景的图像去雾任务。

2、无监督图像去雾的核心思想

无监督的图像去雾模型旨在减少对成对(hazy-clear)训练数据的依赖,主要利用生成对抗网络(GAN)、对比学习、解耦学习等方法,以自动提取潜在的清晰图像特征,而无需明确的监督信息。这类方法的优势包括:

  1. 不需要大量标注数据。
  2. 能够更好地应对领域偏移(synthetic-to-real domain shift)问题。
  3. 在现实场景(如浓雾、森林火灾)中具有更好的泛化能力。

二、综述中提到的无监督去雾方法

以下是文中提到的具体无监督去雾模型和方法:

1. 自动编码器对比正则化网络 (Auto-Encoder Contrastive Regularization Network,AECR-Net)

1.1 架构描述

  • 核心模块
    基于 自编码器(Auto-Encoder) 的无监督框架,结合了 对比正则化(Contrastive Regularization) 方法。
  • 流程
    1. 输入雾霾图像后,通过编码器提取特征,并生成去雾图像。
    2. 使用三元组损失(Triplet Loss)进行对比学习:
      • Anchor(去雾图像)。
      • Positive(清晰图像)。
      • Negative(雾霾图像)。
    3. 目标是拉近 Anchor 与 Positive 的特征距离,拉远 Anchor 与 Negative 的特征距离。
  • 特点
    • 强调去雾特征的判别能力。
    • 通过无监督的对比机制增强去雾效果。

1.2 缺点

  1. 特征表示有限
    自编码器虽然能够提取全局特征,但对复杂的局部特征(如雾浓度变化)表现有限,可能导致细节还原不足。
  2. 对比学习的负样本选择敏感
    三元组损失依赖于负样本的质量,如果负样本选择不当,可能导致模型优化方向偏移。

1.3 改进点

  1. 引入动态负样本挖掘机制

    • 动态选择难度适中的负样本(如硬负样本),以避免负样本选择不当对对比学习的影响。
    • 使用自适应权重机制,根据样本的难度调整对比损失的贡献。
  2. 结合多尺度特征提取

    • 增加多尺度模块,提升对复杂场景(如不均匀雾霾)特征的提取能力。
  3. 结合物理先验

    • 加入大气散射模型作为额外的约束,增强对物理意义的解释力。

2. 解耦对比学习(Contrastive Disentanglement Learning, CDL)

2.1 架构描述

  • 框架
    基于 CycleGAN 的无监督框架,通过引入 解耦学习(Disentanglement Learning) 将去雾任务转化为两个因子的分离问题:
    1. 任务相关因子(如图像清晰特征)。
    2. 任务无关因子(如背景噪声)。
  • 流程
    1. 生成对抗网络(GAN):生成器生成负样本,并通过对抗损失优化生成质量。
    2. 对比学习(Contrastive Learning):对比正负样本之间的特征,优化解耦效果。
    3. 通过优化解耦因子的特征表示,抑制无关信息对去雾任务的干扰。
  • 特点
    • 解决了无监督任务中,去雾特征与无关特征混淆的问题。
    • 增强模型对复杂场景的适应能力。

2.2 缺点

  • 特征解耦不完全
    任务相关因子和无关因子的分离依赖于生成器的质量。如果生成器生成的负样本不足以代表真实场景,解耦效果会受到影响。
  • 训练复杂性
    CycleGAN 框架引入了解耦和对比学习模块,训练过程可能不稳定,容易出现模式崩溃(Mode Collapse)现象。
  • 领域泛化能力有限
    CDL 需要额外优化特征分布对齐以适应不同的领域(如合成数据到真实数据)。

2.3 改进点

  • 改进解耦模块

    • 使用基于 Transformer 的解耦机制,增强对非局部特征的捕捉能力。
    • 设计专用的解耦损失函数,例如结合对比损失和感知损失,进一步优化任务相关因子与无关因子的分离。
  • 简化训练过程

    • 使用更高效的对抗框架,例如基于能量的 GAN(Energy-based GAN),提高训练稳定性。
  • 结合多模态数据

    • 引入多光谱或超光谱数据,利用跨模态的信息提升解耦质量。

3. 零样本图像去雾(Zero-shot Image Dehazing,ZID)

3.1架构描述

  • 核心思想
    假设雾霾图像可以分解为以下三个独立层:
    1. 无雾图像层(Haze-free Image Layer)
    2. 传输图层(Transmission Map Layer)
    3. 环境光层(Ambient Light Layer)
  • 网络模块
    • J-Net:负责提取无雾图像层的特征。
    • T-Net:用于估计传输图层。
    • A-Net:预测环境光层的参数。
  • 流程
    通过三个子网络分别提取上述层的信息,再重组为去雾后的清晰图像。
  • 特点
    • 无需成对数据,适合合成数据与真实数据的领域迁移任务。
    • 可以在单张输入图像上直接进行去雾操作。

3.2 缺点

  • 假设的局限性
    该模型假设雾霾图像可以严格分解为无雾图像、传输图和环境光三部分。然而,这一假设在复杂场景下(如多光源、非均匀雾霾分布)可能无法成立,导致结果不理想。
  • 模型依赖性高
    三个子网络(J-Net、T-Net、A-Net)的性能直接决定去雾效果。如果某个子网络表现较弱,会显著降低整体效果。
  • 缺乏先验的支持
    ZID 不结合物理模型(如大气散射模型),在某些情况下可能缺乏对实际雾霾分布的物理解释能力。

3.3 改进点

  • 增强图像分解模型的鲁棒性

    • 考虑更灵活的图像分解方式,例如通过神经网络自动学习分解参数,而不是手动设置固定的分解规则。
    • 引入自适应权重模块,根据场景调整不同分解层的贡献。
  • 结合物理模型约束

    • 将大气散射模型(ASM)嵌入到分解过程中,使得模型对真实雾霾场景更具物理意义。
  • 设计端到端框架

    • 通过联合优化,将分解网络与去雾网络结合,减少单独模块性能不足的风险。

4. 层次对比去雾(Hierarchical Contrastive Dehazing,HCD)

4.1 架构描述

  • 核心模块
    结合 层次特征提取(Hierarchical Feature Extraction)对比学习(Contrastive Learning) 的方法,优化神经网络中的层次特征。
  • 流程
    1. 多尺度激活模块(Multi-scale Activation Module):提取不同层次的特征。
    2. 层次交互模块(Hierarchical Interaction Module):结合多层特征,优化去雾图像生成。
    3. 层次对比损失(Hierarchical Contrastive Loss):针对分层样本对进行对比学习,提升特征解耦能力。
  • 特点
    • 特别适合处理复杂场景(如浓雾、雾霾分布不均的场景)。
    • 在公开数据集(如 DENSE-HAZE)上取得了优异的去雾效果。

4.2 缺点

  • 计算复杂性高
    层次特征提取和多尺度激活模块增加了计算开销,特别是在高分辨率图像上的应用可能不够高效。
  • 对多尺度特征依赖大
    如果某些层次的特征丢失或提取不到位,可能导致最终图像的细节不完整。
  • 对训练数据的质量敏感
    HCD 在训练过程中需要高质量的无监督数据分布,如果训练数据存在偏差,可能导致模型泛化性下降。

4.3 改进点

  • 优化多尺度模块

    • 使用轻量化多尺度结构,例如 MobileNet 或 ShuffleNet,减少计算开销。
    • 增加特征补全机制,解决因部分层特征丢失导致的性能下降问题。
  • 引入稀疏注意力机制

    • 用稀疏注意力代替传统自注意力机制,降低计算复杂度,同时保留长距离依赖关系的建模能力。
  • 针对特定场景优化

    • 针对高分辨率场景,设计特定的分块处理(Patch-based Processing),减少显存占用。

5. 课程对比正则化(Curricular Contrastive Regularization,CCR)

5.1架构描述

  • 核心模块
    引入基于物理模型的双分支单元(Physics-driven Dual Units, PDU),结合 课程学习(Curriculum Learning) 提高训练效率。
  • 流程
    1. 根据任务难度将负样本分为三类:简单、困难、超困难。
    2. 课程学习策略逐步训练模型,从简单任务到复杂任务逐级优化。
    3. 双分支网络提取物理特征和深度特征,增强去雾效果。
  • 特点
    • 提高对复杂雾霾场景的鲁棒性。
    • 在多个数据集(如 RESIDE 和 NTIRE 2021)上表现优异。

5.2 缺点

  • 课程学习的难度设置依赖经验
    如何合理地划分负样本的难度(简单、困难、超困难)对模型性能影响显著,但这种划分通常需要经验调整,缺乏自动化手段。
  • 物理特征的适用性
    双分支网络中,物理模型的引入需要先验知识支持,对于复杂非均匀雾霾环境可能表现有限。
  • 训练时间长
    多阶段课程学习增加了训练时间,与简单的无监督方法相比效率较低

5.3 改进点

  • 自动化课程学习策略

    • 使用基于强化学习的策略,自动调整课程难度,以减少人工参与。
    • 动态更新负样本的权重,使得模型能够逐步学习更困难的任务。
  • 改进物理分支网络

    • 将更多物理先验(如光强变化、透射率变化)融入到分支网络中,提升物理特征的适用性。
  • 并行化训练

    • 优化训练流程,将课程学习与特征提取并行进行,减少整体训练时间。

三、总结

以上无监督去雾模型(AECR-Net、CDL、ZID、HCD 和 Curricular Contrastive Regularization)从架构设计到训练策略都体现了创新点,尤其在减少数据标注需求、增强模型泛化能力方面展现了巨大潜力。未来可以结合多模态数据、改进解耦损失函数,进一步提升性能。

内容概要:本文综述图像技术的发展历程、关键方法及其应用场景。首先介绍了霾对图像质量的影响,包括对比度低、细节丢失等问题,以及其对计算机视觉任务的负面影响。接着讨论了图像的难点,如对多个物理变量的依赖、有限的信息、病态问题配对数据获取的困难。文章详细描述了基于图像增强、图像恢复图像融合三种主要的方法,并对比了各自的技术路径适用场景。基于深度学习方法近年来取得了显著进展,尤其在多尺度模块、多形状注意力频率调制等关键技术方面表现突出。最后,文章展望了未来的研究方向,包括模型优化、轻量化设计、多任务学习自监督学习等。 适合人群:对计算机视觉领域感兴趣的研究人员、工程师学生,尤其是关注图像技术及其应用的人士。 使用场景及目标:①理解图像技术的基本原理发展历程;②掌握基于物理模型深度学习的不同方法的特点优缺点;③探讨图像技术在自动驾驶、监控、遥感等领域的应用前景。 其他说明:本文不仅总结了国内外图像技术的研究现状,还通过实验对比了多种方法的性能,为读者提供了丰富的参考资料。未来研究应着眼于提高模型的泛化能力鲁棒性,推动图像技术在更多领域的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值