import cv2
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
d2l.set_figsize()
img = d2l.Image.open('E:\\pythonProject/img/cat1.jpg')
# d2l.plt.imshow(img);
# im = cv2.imread('E:\\pythonProject/img/cat1.jpg')
# cv2.imshow('im',im)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
##对图像进行变化 两行四列
def apply(img,bianhua,row=2,col=4,bili =1.5):
y = [bianhua(img) for _ in range(row*col)]
d2l.show_images(y,row,col,scale=bili)
# #对图像做左右反转
# apply(img,torchvision.transforms.RandomHorizontalFlip())
# #上下翻转
# apply(img,torchvision.transforms.RandomVerticalFlip())
# #随机裁剪一个面积为原始面积10%到100%的区域,
# # 该区域的宽高比从0.5~2之间随机取值。 然后,区域的宽度
深度学习(二十)计算机视觉 数据增广 新手入门及常见问题解决
最新推荐文章于 2024-08-07 09:38:35 发布
本文介绍了如何在PyTorch中使用OpenCV库进行图像操作,如变换、翻转、裁剪和色彩调整。并通过CIFAR-10数据集展示了数据增强技术在深度学习训练中的应用,包括使用DataLoader和多GPU训练策略。
摘要由CSDN通过智能技术生成