铁路场景中,乘客异常行为识别

在铁路场景中,乘客异常行为识别(如摔倒、徘徊等)是保障公共安全和运营秩序的关键技术。以下是具体实现方法和应用场景的详细说明:

实现方法

  1. 基于深度学习的行为识别模型

    • 模型选择:使用深度学习模型(如YOLOv5、YOLOv8等)进行行人检测,并结合行为识别模型(如3D CNN或基于骨架的行为识别模型)来识别异常行为。

    • 数据采集与预处理:在车站、车厢等关键位置部署高清摄像头,采集视频流。对视频帧进行预处理,包括去噪、归一化等操作。

    • 特征提取与行为分析:通过深度学习模型提取行人的特征信息,并分析其运动轨迹、停留时间等行为特征。例如,通过分析行人的运动速度和方向变化,判断是否存在徘徊行为。

    • 异常行为识别:将提取的特征与正常行为模式进行对比,识别出异常行为(如摔倒、打架等)。对于摔倒行为,可以通过检测行人姿态的突然变化来实现。

  2. 多模态数据融合

    • 数据融合:结合视频图像、红外热成像、音频等多模态数据,提高异常行为识别的准确性和鲁棒性。

    • 实时监控与预警:系统实时分析多模态数据,当检测到异常行为时,立即发出警报。

  3. 注意力机制与区域划分

    • 区域划分:根据车站或车厢的布局,将监控区域划分为不同的子区域(如站台、车厢通道等),并对每个区域设置不同的监控策略。

    • 注意力机制:在不同区域设置初始注意力机制,优先关注高风险区域或行为。

应用场景

  1. 车站内异常行为监测

    • 徘徊检测:通过分析乘客在车站内的运动轨迹,识别是否存在徘徊行为。如果乘客在某个区域停留时间过长,系统会发出警报。

    • 摔倒检测:利用深度学习模型检测乘客是否摔倒,并及时通知车站工作人员。

  2. 车厢内异常行为监测

    • 打架斗殴检测:通过分析乘客的行为模式,识别是否存在打架斗殴等异常行为,并立即通知列车工作人员进行干预。

    • 健康问题监测:检测乘客是否发生跌倒、昏厥等健康问题,及时提供紧急救援。

  3. 铁路沿线安全监控

    • 行人入侵检测:在铁路沿线监测是否有行人误入轨道区域,一旦发现异常行为,立即发出警报。

通过上述方法,铁路场景中的异常行为识别技术能够有效提高公共安全和运营效率,保障乘客和铁路设施的安全。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能专属驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值