定积分在几何中的一个重要应用是计算旋转体的体积。通过定积分,我们可以求得由平面曲线围成的区域旋转一周所生成的三维物体的体积。常见的方法是圆盘法(Disk Method)和壳层法(Shell Method)。
1. 圆盘法(Disk Method)
圆盘法适用于当物体绕 (x)-轴或 (y)-轴旋转时。它基于将旋转体分解成许多非常薄的圆盘,进而通过定积分求出体积。
公式:
- 如果曲线 ( y = f(x) ) 在区间 ([a, b]) 上围成一个区域,且这个区域绕 (x)-轴旋转形成一个三维体积,那么体积 (V) 可以通过以下公式计算:
V = π ∫ a b [ f ( x ) ] 2 d x V = \pi \int_a^b [f(x)]^2 \, dx V=π∫ab[f(x)]2dx
- 如果曲线 ( x = g(y) ) 在区间 ([c, d]) 上围成一个区域,且这个区域绕 (y)-轴旋转形成一个三维体积,那么体积 (V) 可以通过以下公式计算:
V = π ∫ c d [ g ( y ) ] 2 d y V = \pi \int_c^d [g(y)]^2 \, dy V=π∫cd[g(y)]2dy
2. 壳层法(Shell Method)
壳层法适用于当物体绕 (x)-轴或 (y)-轴旋转时,且物体是通过水平或垂直的“壳层”分解的。
公式:
- 如果曲线 ( y = f(x) ) 在区间 ([a, b]) 上围成一个区域,且这个区域绕 (y)-轴旋转形成一个三维体积,那么体积 (V) 可以通过以下公式计算:
V = 2 π ∫ a b x f ( x ) d x V = 2\pi \int_a^b x f(x) \, dx V=2π∫abxf(x)dx
- 如果曲线 ( x = g(y) ) 在区间 ([c, d]) 上围成一个区域,且这个区域绕 (x)-轴旋转形成一个三维体积,那么体积 (V) 可以通过以下公式计算:
V = 2 π ∫ c d y g ( y ) d y V = 2\pi \int_c^d y g(y) \, dy V=2π∫cdyg(y)dy
例题 1:使用圆盘法计算体积
问题:计算曲线 ( y = \sqrt{x} ) 在区间 ([0, 4]) 上绕 (x)-轴旋转形成的体积。
解答:
-
确定函数和区间:
- 被积函数是 ( y = \sqrt{x} ),区间是 ([0, 4])。
-
应用圆盘法公式:
体积公式为:
V = π ∫ 0 4 ( x ) 2 d x V = \pi \int_0^4 (\sqrt{x})^2 \, dx V=π∫04(x)2dx -
简化被积函数:
( (\sqrt{x})^2 = x ),所以积分变为:
V = π ∫ 0 4 x d x V = \pi \int_0^4 x \, dx V=π∫04xdx -
计算积分:
计算 ( \int_0^4 x , dx ):
∫ x d x = x 2 2 \int x \, dx = \frac{x^2}{2} ∫xdx=2x2 -
代入上下限并计算:
V = π [ x 2 2 ] 0 4 = π ( 4 2 2 − 0 2 2 ) = π ( 16 2 ) = 8 π V = \pi \left[ \frac{x^2}{2} \right]_0^4 = \pi \left( \frac{4^2}{2} - \frac{0^2}{2} \right) = \pi \left( \frac{16}{2} \right) = 8\pi V=π[2x2]04=π(242−202)=π(216)=8π
所以,体积是 ( 8\pi ) 立方单位。
例题 2:使用壳层法计算体积
问题:计算曲线 ( y = x^2 ) 在区间 ([0, 2]) 上绕 (y)-轴旋转形成的体积。
解答:
-
确定函数和区间:
- 被积函数是 ( y = x^2 ),区间是 ([0, 2])。
-
应用壳层法公式:
体积公式为:
V = 2 π ∫ 0 2 x ⋅ x 2 d x V = 2\pi \int_0^2 x \cdot x^2 \, dx V=2π∫02x⋅x2dx -
简化被积函数:
( x \cdot x^2 = x^3 ),所以积分变为:
V = 2 π ∫ 0 2 x 3 d x V = 2\pi \int_0^2 x^3 \, dx V=2π∫02x3dx -
计算积分:
计算 ( \int_0^2 x^3 , dx ):
∫ x 3 d x = x 4 4 \int x^3 \, dx = \frac{x^4}{4} ∫x3dx=4x4 -
代入上下限并计算:
V = 2 π [ x 4 4 ] 0 2 = 2 π ( 2 4 4 − 0 4 4 ) = 2 π ( 16 4 ) = 8 π V = 2\pi \left[ \frac{x^4}{4} \right]_0^2 = 2\pi \left( \frac{2^4}{4} - \frac{0^4}{4} \right) = 2\pi \left( \frac{16}{4} \right) = 8\pi V=2π[4x4]02=2π(424−404)=2π(416)=8π
所以,体积是 ( 8\pi ) 立方单位。
总结
定积分在计算体积方面非常有用,常见的应用方法有两种:
- 圆盘法:适用于绕 (x)-轴或 (y)-轴旋转生成的体积,积分的结果通常是一个简单的平方项。
- 壳层法:适用于某些情况下更容易计算的体积,积分的结果涉及到乘积和常数因子的处理。
通过适当选择这些方法,可以帮助我们更有效地计算由旋转体产生的体积。