机器学习数学基础-定积分求体积

定积分在几何中的一个重要应用是计算旋转体的体积。通过定积分,我们可以求得由平面曲线围成的区域旋转一周所生成的三维物体的体积。常见的方法是圆盘法(Disk Method)和壳层法(Shell Method)。

1. 圆盘法(Disk Method)

圆盘法适用于当物体绕 (x)-轴或 (y)-轴旋转时。它基于将旋转体分解成许多非常薄的圆盘,进而通过定积分求出体积。

公式
  • 如果曲线 ( y = f(x) ) 在区间 ([a, b]) 上围成一个区域,且这个区域绕 (x)-轴旋转形成一个三维体积,那么体积 (V) 可以通过以下公式计算:

V = π ∫ a b [ f ( x ) ] 2   d x V = \pi \int_a^b [f(x)]^2 \, dx V=πab[f(x)]2dx

  • 如果曲线 ( x = g(y) ) 在区间 ([c, d]) 上围成一个区域,且这个区域绕 (y)-轴旋转形成一个三维体积,那么体积 (V) 可以通过以下公式计算:

V = π ∫ c d [ g ( y ) ] 2   d y V = \pi \int_c^d [g(y)]^2 \, dy V=πcd[g(y)]2dy

2. 壳层法(Shell Method)

壳层法适用于当物体绕 (x)-轴或 (y)-轴旋转时,且物体是通过水平或垂直的“壳层”分解的。

公式
  • 如果曲线 ( y = f(x) ) 在区间 ([a, b]) 上围成一个区域,且这个区域绕 (y)-轴旋转形成一个三维体积,那么体积 (V) 可以通过以下公式计算:

V = 2 π ∫ a b x f ( x )   d x V = 2\pi \int_a^b x f(x) \, dx V=2πabxf(x)dx

  • 如果曲线 ( x = g(y) ) 在区间 ([c, d]) 上围成一个区域,且这个区域绕 (x)-轴旋转形成一个三维体积,那么体积 (V) 可以通过以下公式计算:

V = 2 π ∫ c d y g ( y )   d y V = 2\pi \int_c^d y g(y) \, dy V=2πcdyg(y)dy

例题 1:使用圆盘法计算体积

问题:计算曲线 ( y = \sqrt{x} ) 在区间 ([0, 4]) 上绕 (x)-轴旋转形成的体积。

解答

  1. 确定函数和区间

    • 被积函数是 ( y = \sqrt{x} ),区间是 ([0, 4])。
  2. 应用圆盘法公式
    体积公式为:
    V = π ∫ 0 4 ( x ) 2   d x V = \pi \int_0^4 (\sqrt{x})^2 \, dx V=π04(x )2dx

  3. 简化被积函数
    ( (\sqrt{x})^2 = x ),所以积分变为:
    V = π ∫ 0 4 x   d x V = \pi \int_0^4 x \, dx V=π04xdx

  4. 计算积分
    计算 ( \int_0^4 x , dx ):
    ∫ x   d x = x 2 2 \int x \, dx = \frac{x^2}{2} xdx=2x2

  5. 代入上下限并计算
    V = π [ x 2 2 ] 0 4 = π ( 4 2 2 − 0 2 2 ) = π ( 16 2 ) = 8 π V = \pi \left[ \frac{x^2}{2} \right]_0^4 = \pi \left( \frac{4^2}{2} - \frac{0^2}{2} \right) = \pi \left( \frac{16}{2} \right) = 8\pi V=π[2x2]04=π(242202)=π(216)=8π

所以,体积是 ( 8\pi ) 立方单位。

例题 2:使用壳层法计算体积

问题:计算曲线 ( y = x^2 ) 在区间 ([0, 2]) 上绕 (y)-轴旋转形成的体积。

解答

  1. 确定函数和区间

    • 被积函数是 ( y = x^2 ),区间是 ([0, 2])。
  2. 应用壳层法公式
    体积公式为:
    V = 2 π ∫ 0 2 x ⋅ x 2   d x V = 2\pi \int_0^2 x \cdot x^2 \, dx V=2π02xx2dx

  3. 简化被积函数
    ( x \cdot x^2 = x^3 ),所以积分变为:
    V = 2 π ∫ 0 2 x 3   d x V = 2\pi \int_0^2 x^3 \, dx V=2π02x3dx

  4. 计算积分
    计算 ( \int_0^2 x^3 , dx ):
    ∫ x 3   d x = x 4 4 \int x^3 \, dx = \frac{x^4}{4} x3dx=4x4

  5. 代入上下限并计算
    V = 2 π [ x 4 4 ] 0 2 = 2 π ( 2 4 4 − 0 4 4 ) = 2 π ( 16 4 ) = 8 π V = 2\pi \left[ \frac{x^4}{4} \right]_0^2 = 2\pi \left( \frac{2^4}{4} - \frac{0^4}{4} \right) = 2\pi \left( \frac{16}{4} \right) = 8\pi V=2π[4x4]02=2π(424404)=2π(416)=8π

所以,体积是 ( 8\pi ) 立方单位。

总结

定积分在计算体积方面非常有用,常见的应用方法有两种:

  • 圆盘法:适用于绕 (x)-轴或 (y)-轴旋转生成的体积,积分的结果通常是一个简单的平方项。
  • 壳层法:适用于某些情况下更容易计算的体积,积分的结果涉及到乘积和常数因子的处理。

通过适当选择这些方法,可以帮助我们更有效地计算由旋转体产生的体积。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值