二重积分在直角坐标系下的计算是多重积分中的一个基本问题。对于一个在二维平面上定义的函数,二重积分可以用于计算区域内的面积、体积等量。直角坐标系下的二重积分计算是最常见的形式,下面我将介绍如何在直角坐标系下进行二重积分的计算。
1. 二重积分的定义(直角坐标系)
设 ( f(x, y) ) 是一个在平面区域 ( D ) 上定义的函数。区域 ( D ) 是一个二维区域(通常为矩形或一些简单的几何区域)。二重积分的表达式为:
∬ D f ( x , y ) d A \iint_D f(x, y) \, dA ∬Df(x,y)dA
在直角坐标系下,面积元素 ( dA ) 一般表示为 ( dx , dy ) 或 ( dy , dx ),这取决于选择的积分顺序。具体的积分计算方法依赖于积分区域 ( D ) 的形状。
2. 计算过程
1. 明确积分区域 ( D )
首先,确定积分区域 ( D ) 的范围。常见的区域有两种:
- 矩形区域:在矩形区域 ( D = [x_1, x_2] \times [y_1, y_2] ),( x ) 和 ( y ) 的范围是固定的,直接设置积分的上下限即可。
- 非矩形区域:在某些情况下,区域 ( D ) 的边界可能是由方程描述的,需要根据函数 ( f(x, y) ) 和边界条件来确定积分的上下限。
2. 设定二重积分表达式
根据积分区域的定义,写出二重积分的表达式。通常情况下,我们可以选择先对 ( x ) 积分,再对 ( y ) 积分,或者先对 ( y ) 积分,再对 ( x ) 积分,二者是等价的。
例如,如果区域 ( D ) 是矩形 ( [x_1, x_2] \times [y_1, y_2] ),则二重积分可以写为:
∬ D f ( x , y ) d x d y = ∫ y 1 y 2 ( ∫ x 1 x 2 f ( x , y ) d x ) d y \iint_D f(x, y) \, dx \, dy = \int_{y_1}^{y_2} \left( \int_{x_1}^{x_2} f(x, y) \, dx \right) dy ∬Df(x,y)dxdy=∫y1y2(∫x1x2f(x,y)dx)dy
或者:
∬ D f ( x , y ) d x d y = ∫ x 1 x 2 ( ∫ y 1 y 2 f ( x , y ) d y ) d x \iint_D f(x, y) \, dx \, dy = \int_{x_1}^{x_2} \left( \int_{y_1}^{y_2} f(x, y) \, dy \right) dx ∬Df(x,y)dxdy=∫x1x2(∫y1y2f(x,y)dy)dx
3. 计算内外积分
二重积分的计算通常是通过两步积分来完成:
- 内层积分:首先固定一个变量,对另一个变量进行积分。
- 外层积分:然后对第一个变量进行积分。
3. 例题
例题 1:计算矩形区域的面积
假设我们需要计算矩形区域 ( D = [0, 2] \times [0, 3] ) 上的面积,且函数 ( f(x, y) = 1 )。
步骤 1:设定二重积分表达式
由于我们要求的是面积,所以被积函数是 1。二重积分的表达式为:
∬ D 1 d x d y \iint_D 1 \, dx \, dy ∬D1dxdy
步骤 2:计算内外积分
首先对 ( x ) 积分:
∫ 0 2 1 d x = 2 \int_0^2 1 \, dx = 2 ∫021dx=2
然后对 ( y ) 积分:
∫ 0 3 2 d y = 6 \int_0^3 2 \, dy = 6 ∫032dy=6
因此,该矩形区域的面积为 6。
例题 2:计算函数 ( f(x, y) = x + y ) 在矩形区域 ( D = [0, 2] \times [0, 3] ) 上的二重积分
我们需要计算二重积分:
∬ D ( x + y ) d x d y \iint_D (x + y) \, dx \, dy ∬D(x+y)dxdy
步骤 1:设定二重积分表达式
该区域是矩形区域 ( D = [0, 2] \times [0, 3] ),所以可以写成:
∫ 0 3 ( ∫ 0 2 ( x + y ) d x ) d y \int_0^3 \left( \int_0^2 (x + y) \, dx \right) dy ∫03(∫02(x+y)dx)dy
步骤 2:计算内层积分
首先对 ( x ) 积分:
∫ 0 2 ( x + y ) d x = ∫ 0 2 x d x + ∫ 0 2 y d x \int_0^2 (x + y) \, dx = \int_0^2 x \, dx + \int_0^2 y \, dx ∫02(x+y)dx=∫02xdx+∫02ydx
- ( \int_0^2 x , dx = \left[ \frac{x^2}{2} \right]_0^2 = \frac{4}{2} = 2 )
- ( \int_0^2 y , dx = y \cdot 2 = 2y )
所以内层积分结果为:
2 + 2 y 2 + 2y 2+2y
步骤 3:计算外层积分
现在对 ( y ) 积分:
∫ 0 3 ( 2 + 2 y ) d y = ∫ 0 3 2 d y + ∫ 0 3 2 y d y \int_0^3 (2 + 2y) \, dy = \int_0^3 2 \, dy + \int_0^3 2y \, dy ∫03(2+2y)dy=∫032dy+∫032ydy
- ( \int_0^3 2 , dy = 2 \cdot 3 = 6 )
- ( \int_0^3 2y , dy = 2 \cdot \frac{y^2}{2} \Big|_0^3 = 9 )
所以外层积分结果为:
6 + 9 = 15 6 + 9 = 15 6+9=15
因此,二重积分的结果为 15。
4. 总结
二重积分在直角坐标系下的计算方法是:
- 明确积分区域 ( D )。
- 写出二重积分的表达式,确定积分顺序。
- 分别计算内层和外层积分。
常见的计算区域是矩形区域,而当区域是更复杂的形状时,可以通过分段或分步积分的方式进行计算。二重积分在计算区域的面积、体积、质量等物理量时具有广泛应用。