系统频率响应模型(SFR)推导与安全指标

一、频率响应过程详细推导(电力系统视角)


1. 系统动态模型与摆动方程

电力系统频率响应分析的核心是建立扰动下的动态方程,结合同步机组和逆变器的动态特性:

\sum\left(H_{gi}+H_{vj}\right)\frac{d\Delta f(t)}{dt}=-D\Delta f(t)+\Delta P_L-\sum\Delta P_{gi}(t)-\sum\Delta P_{vj}(t)

  • 参数说明
    H_{gi}H_{vj}为机组惯性时间常数;D为负载阻尼系数;\Delta P_{L}为有功扰动;\Delta P_{gi}(t)\Delta P_{vj}(t)为机组调频功率调整量。

推导关键步骤

  • 1、拉普拉斯变换:将时域方程转换至频域,得到传递函数:

\Delta f(s)=\frac{\Delta P_L-\sum\Delta P_{gi}(s)-\sum\Delta P_{vj}(s)}{s\sum(H_{gi}+H_{vj})+D}

  • 2、调频环节建模

    • 同步机组调频功率:\Delta P_{gi}(s)=\frac{R_{gi}}{1+T_{ri}s}\Delta f(s)

    • 虚拟同步机调频功率:\Delta P_{vj}(s)=\frac{R_{vj}}{1+T_{vj}s}\Delta f(s)
      其中R_{gi},R_{vj}为调速器增益,T_{ri},T_{vj}为时间常数。

  • 3、参数聚合:将多机组等效为系统级参数:

H_t=\sum\left(\frac{S_i}{S_{sys}}u_{i,t}H_i\right),\quad K_{sys}=\sum\left(\frac{S_i}{S_{sys}}u_{i,t}R_i\right)

其中S_{i}为机组容量,u_{i,t}为运行状态变量。


2. 频率响应时域解析解

通过传递函数极点分析,得到频率偏差的时域表达式:

\Delta f(t)=\frac{\Delta P}{D+K_{sys}}\left(1-e^{-\frac{D+K_{sys}}{2H_t}t}\cos\omega_dt\right)

  • 关键参数
    • 阻尼比:\zeta=\frac{D+K_{sys}}{2\sqrt{H_t(D+K_{sys})}}

    • 阻尼振荡频率:\omega_n=\sqrt{\frac{D+K_{sys}}{H_t}}

    • 自然振荡频率:\omega_d=\omega_n\sqrt{1-\zeta^2}

频率最低点(Nadir)计算
通过求导确定极值时间t_{nadir},代入时域方程得:

\Delta f_{nadir}=\frac{\Delta P}{D+K_{sys}}\left(1-\frac{\zeta}{\sqrt{\zeta^2+1}}\right)

此过程需结合系统传递函数的动态特性分析。


二、扩展频率安全指标


1. 基础指标
  • 频率偏差极值(Δf_nadir):最大瞬时频率跌落,反映系统抗短时扰动能力。

  • 稳态频率偏差(Δf_ss)

\Delta f_{ss}=\frac{\Delta P}{D+K_{sys}}

2. 动态指标
  • 频率变化率(RoCoF, Rate of Change of Frequency)

RoCoF_{max}=\left|\frac{d\Delta f}{dt}\right|_{max}=\frac{\Delta P}{2H_t}

  • 反映频率变化速度,与系统惯性直接相关。

  • 频率恢复时间(T_recovery):频率恢复至稳态的±0.1Hz内所需时间,与阻尼比和调频增益相关。

3. 综合安全指标
  • 频率安全裕度(FSM, Frequency Security Margin)

FSM=\frac{\Delta f_{nadir}-\Delta f_{threshold}}{\Delta f_{threshold}}

  • 衡量频率跌落与安全阈值的距离。

  • 频率安全边际指数(FSMI)
    将系统稳定裕度分为三个等级(高、中、低),量化不同设备的频率支撑能力,适用于高新能源渗透场景。


三、关键公式总结

指标名称表达式物理意义
系统等效惯性时间常数H_t=\sum\left(\frac{S_i}{S_{sys}}u_{i,t}H_i\right)反映系统整体惯性
频率最低点\begin{aligned} & \Delta f_{nadir}= \\ & \frac{\Delta P}{D+K_{sys}}\left(1-\frac{\zeta}{\sqrt{\zeta^2+1}}\right) \end{aligned}最大瞬时频率跌落
频率变化率(RoCoF)RoCoF_{max}=\frac{\Delta P}{2H_t}频率跌落速度,与惯性成反比
频率安全边际指数FSMI=\frac{\Delta f_{nadir}-\Delta f_{threshold}}{\Delta f_{threshold}}量化频率安全裕度

四、扩展讨论

  • 阻尼比优化:典型电力系统要求\zeta>0.2,可通过调节调频增益K_{sys}实现。

  • 新能源影响:高风电/光伏渗透会降低​H_{t},需配置虚拟惯性控制(如VSG)补偿。

  • 负荷动态特性:电压波动会改变负荷有功需求,需在模型中引入综合负荷传递函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值