一、有限时间稳定
1.1定义
对于如下系统:
x˙=f(x) (1)
其中,状态量 x∈Rn ,函数 f:Rn→Rn 是一个非线性局部Lebesgue可积且 f(0)=0 的函数。系统的初始条件为: x0=x(0)∈Rn 。
有限时间(finite-time)稳定性定义如下:
如果(1)的原点是全局渐近稳定(globally asymptotically stable)的,并且(1)中的任何解
x(t,x0) 在某个有限时刻 T 达到平衡点,即 ∀t≥T(x0):x(t,x0)=0 ( T:Rn→R+∪{0} 被称为稳定时间(settling-time)函数),则称(1)的原点是全局有限时间稳定(globally finite-time stable)的。
1.2稳定时间函数
对于如下系统:
其中 sign(0)=0 , k>0 , α∈(0,1) ,且系统在任何地方都是连续的,除了原点都是利普希茨连续的。
且 x(0)=x0 ,则稳定时间为: T=|x|1−α/k(1−α) 。
同理,对于如下滑模面的系统,它是快速有限时间稳定:
s=x˙+αx+k⋅sign(x)|x|β=0它的稳定时间函数为: T(x0)=1/k(1−β)*ln(α|x0|1−β+k)/k
二、固定时间稳定性
如果系统(1)的任何解 x(t,x0) 在某个有限时间 t=t0+T(x0) 内达到 M ,则称非空集 M⊂Rn 对系统(1)具有全局固定时间吸引力,其中稳定时间函数 T:Rn→R+∪{0} 由某个正数 Tm 有界,即对于所有 x0∈Rn , T(x0)≤Tm 。
简短而言:系统(1)的原点是固定时间稳定的,如果它是全局有限时间稳定的并且稳定时间函数是有界的,即: ∃Tmax>0,∀x0∈Rn:T(x0)≤Tmax 。
值得注意的是,即使在系统(1)的原点是固定时间稳定的情况下,通常也很难找到上界 Tmax 和系统参数之间的显式关系,并且在某些情况下,即使通过调整系统参数,也不能将界 Tmax 减小到小于固定常数。这推动了预定义时间稳定性概念的制定。