固定时间收敛的控制器设计(基础知识)

本文详细探讨了非线性系统的固定时间稳定性定义和定理,包括李雅普诺夫稳定性、有限时间稳定均衡点以及几种固定时间稳定定理的证明,为设计固定时间控制器提供了理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

固定时间收敛的控制器设计(基础知识)

摘要

本篇文章主要描述在设计固定时间控制器时,所采用的一些引理。

主要结果

稳定性定义

考虑如下非线性自治系统
x ˙ = f ( x ) , x ( 0 ) = x 0 \dot{x}=f(x),\quad x(0)=x_0 x˙=f(x),x(0)=x0其中 x ∈ R n x\in\mathbb{R}^n xRn表示状态; f : D → R n f:\mathbb{D}\to\mathbb{R}^n f:DRn表示在原点的开邻域 D \mathbb{D} D内的上半连续映射。 ∀ x ∈ D \forall x\in\mathbb{D} xD, f ( x ) f(x) f(x)非空,并且 ∀ t > 0 \forall t>0 t>0, f ( 0 ) = 0 f(0)=0 f(0)=0.
定义1:对于非线性系统在原点的均衡点有以下几类情况。

  1. 李雅普诺夫稳定:如果 ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ δ = δ ( ε ) > 0 \exist \delta=\delta(\varepsilon)>0 δ=δ(ε)>0使得当 ∀ ∥ x 0 ∥ < 0 \forall \|x_0\|<0 ∀∥x0<0, 则 ∥ x ( t , x 0 ) ∥ < ε \|x(t,x_0)\|<\varepsilon x(t,x0)<ε, ∀ t > 0 \forall t>0 t>0.
  2. 局部渐近稳定:如果它是稳定的,并且 ∃ δ \exist \delta δ使得 ∀ ∥ x 0 ∥ < δ \forall \|x_0\|<\delta ∀∥x0<δ, 则 lim ⁡ t → + ∞ ∥ x ( t ) ∥ = 0 \lim_{t\to +\infty}\|x(t)\|=0 limt+x(t)=0.
  3. 全局渐近稳定:如果它是稳定的,并且 ∀ x 0 ∈ R \forall x_0\in\mathbb{R} x0R, lim ⁡ t → + ∞ ∥ x 0 ∥ = 0 \lim_{t\to+\infty}\|x_0\|=0 limt+x0=0.
  4. 不稳定:非稳定的。

定义2:对于上述非线性系统,当且仅当原点是一个李雅普诺夫意义下稳定的,并且存在一个关于原点的开邻域 S ⊂ D \mathbb{S}\subset\mathbb{D} SD和一个正函数 T ( x 0 ) = sup ⁡ x ( t , x 0 ) inf ⁡ { T ≥ 0 ; x ( t , x 0 ) = 0 , ∀ t ≥ T , x 0 ∈ S } T(x_0)=\sup_{x(t,x_0)}\inf\{T\geq 0;x(t,x_0)=0,\forall t\geq T, x_0\in\mathbb{S}\} T(x0)=supx(t,x0)inf{ T0;x(t,x0)=0,tT,x0S}(被称为稳定时间函数)使得 ∀ x ( 0 ) ∈ S \ { 0 } \forall x(0)\in\mathbb{S}\backslash \{0\} x(0)S\{ 0}, T ( x 0 ) < + ∞ T(x_0)<+\infty T(x0)<+, 则该点称为有限时间稳定均衡点。进一步,当 S = R \mathbb{S}=\mathbb{R} S=R, 则该点是全局有限时间稳定的。
注:有限时间稳定也是渐近稳定。

定义3:对于上述非线性系统,如果原点是全局有限时间稳定的,并且 T ( x 0 ) T(x_0) T(x0)是有界的,即存在一个实数 T max ⁡ > 0 T_{\max}>0 Tmax>0使得 T ( x 0 ) ≤ T max ⁡ T(x_0)\leq T_{\max} T(x0)Tmax, ∀ x 0 ∈ R \forall x_0\in\mathbb{R} x0R.

固定时间稳定定理

定理1:假设存在一个连续可微的正定函数 V ( x ) : D → R V(x):\mathbb{D}\to\mathcal{R} V(x):DR,使得对于任意的正实数 c > 0 c>0 c>0以及 α ∈ ( 0 , 1 ) \alpha\in(0,1) α(0,1),如下不等式成立
V ˙ ( x ) + c V α ( x ) ≤ 0 , ∀ x ∈ S \ { 0 } \dot{V}(x)+cV^{\alpha}(x)\leq 0,\quad \forall x\in\mathbb{S}\backslash\{0\} V˙(x)+cVα(x)0,xS\{ 0}则对于上述非线性系统来说,是有限时间稳定的。 稳定时间函数为
T ( x 0 ) ≤ 1 c ( 1 − α ) V 1 − α ( x 0 ) T(x_0)\leq \frac{1}{c(1-\alpha)}V^{1-\alpha}(x_0) T(x0)c(1α)1V1α(x0)进一步,如果 S = D = R \mathbb{S}=\mathbb{D}=\mathbb{R} S=D=R, V V V是径向无界的,并且 V ˙ < 0 \dot{V}<0 V˙<0, ∀ x ∈ R \ { 0 } \forall x\in\mathbb{R}\backslash\{0\} xR\{ 0}, 则该点是全局有限时间稳定的。
证明
由于 d V d t ≤ − c V α \frac{dV}{dt}\leq -cV^\alpha dtdVcVα d V V α ≤ − c d t \frac{dV}{V^\alpha}\leq -cdt VαdVcdt两边同时积分,可得 V 1 − α ( x ) 1 − α ∣ x 0 0 ≤ − c T ( x 0 ) . \frac{V^{1-\alpha}(x)}{1-\alpha}|^{0}_{x_0}\leq -cT(x_0). 1αV1α(x)x00cT(x0).因此 1 c ( 1 − α ) V 1 − α ( x 0 ) ≥ T ( x 0 ) . \frac{1}{c(1-\alpha)}V^{1-\alpha}(x_0)\geq T(x_0). c(1α)1V1α(x0)T(x0).得证 ♠ \spadesuit

定理2:考虑如下非线性系统 x ˙ ( t ) = − α x 2 − p q ( t ) − β x p q ( t ) , x ( 0 ) = x 0 \dot{x}(t)=-\alpha x^{2-\frac{p}{q}}(t)-\beta x^{\frac{p}{q}}(t),\quad x(0)=x_0 x˙(t)=αx2qp(t)βxqp(t),x(0)=x0其中 α , β > 0 \alpha,\beta>0 α,β>0, p , q p,q p,q满足 q > p > 0 q>p>0 q>p>0是奇数。则该非线性系统是固定时间稳定的,并且稳定时间为
T ( x 0 ) ≤ T max ⁡ : = q π 2 α β ( q − p ) . T(x_0)\leq T_{\max}:=\frac{q\pi}{2\sqrt{\alpha\beta}(q-p)}. T(x0)Tmax:=2αβ (qp)qπ.证明:令李雅普诺夫函数为 V ( x ) = x 2 ≥ 0 V(x)=x^2\geq 0 V(x)=x20. 对 V V V关于时间求微分可得
V ˙ = 2 x ( − α x 2 − p q − β x p q ) = − 2 α ( x 2 ) 3 q − p 2 q − 2 β ( x 2 ) p + q 2 q = − 2 ( α V q − p q + β ) V p + q 2 q \begin{aligned} \dot{V}=&2x(-\alpha x^{2-\frac{p}{q}}-\beta x^{\frac{p}{q}})\\ =&-2\alpha (x^2)^\frac{3q-p}{2q}-2\beta(x^2)^{\frac{p+q}{2q}}\\ =&-2(\alpha V^{\frac{q-p}{q}}+\beta)V^{\frac{p+q}{2q}} \end{aligned} V˙===2x(αx2qpβxqp)2α(x2)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值