摘要
本篇文章主要描述在设计固定时间控制器时,所采用的一些引理。
主要结果
稳定性定义
考虑如下非线性自治系统
x ˙ = f ( x ) , x ( 0 ) = x 0 \dot{x}=f(x),\quad x(0)=x_0 x˙=f(x),x(0)=x0其中 x ∈ R n x\in\mathbb{R}^n x∈Rn表示状态; f : D → R n f:\mathbb{D}\to\mathbb{R}^n f:D→Rn表示在原点的开邻域 D \mathbb{D} D内的上半连续映射。 ∀ x ∈ D \forall x\in\mathbb{D} ∀x∈D, f ( x ) f(x) f(x)非空,并且 ∀ t > 0 \forall t>0 ∀t>0, f ( 0 ) = 0 f(0)=0 f(0)=0.
定义1:对于非线性系统在原点的均衡点有以下几类情况。
- 李雅普诺夫稳定:如果 ∀ ε > 0 \forall \varepsilon>0 ∀ε>0, ∃ δ = δ ( ε ) > 0 \exist \delta=\delta(\varepsilon)>0 ∃δ=δ(ε)>0使得当 ∀ ∥ x 0 ∥ < 0 \forall \|x_0\|<0 ∀∥x0∥<0, 则 ∥ x ( t , x 0 ) ∥ < ε \|x(t,x_0)\|<\varepsilon ∥x(t,x0)∥<ε, ∀ t > 0 \forall t>0 ∀t>0.
- 局部渐近稳定:如果它是稳定的,并且 ∃ δ \exist \delta ∃δ使得 ∀ ∥ x 0 ∥ < δ \forall \|x_0\|<\delta ∀∥x0∥<δ, 则 lim t → + ∞ ∥ x ( t ) ∥ = 0 \lim_{t\to +\infty}\|x(t)\|=0 limt→+∞∥x(t)∥=0.
- 全局渐近稳定:如果它是稳定的,并且 ∀ x 0 ∈ R \forall x_0\in\mathbb{R} ∀x0∈R, lim t → + ∞ ∥ x 0 ∥ = 0 \lim_{t\to+\infty}\|x_0\|=0 limt→+∞∥x0∥=0.
- 不稳定:非稳定的。
定义2:对于上述非线性系统,当且仅当原点是一个李雅普诺夫意义下稳定的,并且存在一个关于原点的开邻域 S ⊂ D \mathbb{S}\subset\mathbb{D} S⊂D和一个正函数 T ( x 0 ) = sup x ( t , x 0 ) inf { T ≥ 0 ; x ( t , x 0 ) = 0 , ∀ t ≥ T , x 0 ∈ S } T(x_0)=\sup_{x(t,x_0)}\inf\{T\geq 0;x(t,x_0)=0,\forall t\geq T, x_0\in\mathbb{S}\} T(x0)=supx(t,x0)inf{
T≥0;x(t,x0)=0,∀t≥T,x0∈S}(被称为稳定时间函数)使得 ∀ x ( 0 ) ∈ S \ { 0 } \forall x(0)\in\mathbb{S}\backslash \{0\} ∀x(0)∈S\{
0}, T ( x 0 ) < + ∞ T(x_0)<+\infty T(x0)<+∞, 则该点称为有限时间稳定均衡点。进一步,当 S = R \mathbb{S}=\mathbb{R} S=R, 则该点是全局有限时间稳定的。
注:有限时间稳定也是渐近稳定。
定义3:对于上述非线性系统,如果原点是全局有限时间稳定的,并且 T ( x 0 ) T(x_0) T(x0)是有界的,即存在一个实数 T max > 0 T_{\max}>0 Tmax>0使得 T ( x 0 ) ≤ T max T(x_0)\leq T_{\max} T(x0)≤Tmax, ∀ x 0 ∈ R \forall x_0\in\mathbb{R} ∀x0∈R.
固定时间稳定定理
定理1:假设存在一个连续可微的正定函数 V ( x ) : D → R V(x):\mathbb{D}\to\mathcal{R} V(x):D→R,使得对于任意的正实数 c > 0 c>0 c>0以及 α ∈ ( 0 , 1 ) \alpha\in(0,1) α∈(0,1),如下不等式成立
V ˙ ( x ) + c V α ( x ) ≤ 0 , ∀ x ∈ S \ { 0 } \dot{V}(x)+cV^{\alpha}(x)\leq 0,\quad \forall x\in\mathbb{S}\backslash\{0\} V˙(x)+cVα(x)≤0,∀x∈S\{
0}则对于上述非线性系统来说,是有限时间稳定的。 稳定时间函数为
T ( x 0 ) ≤ 1 c ( 1 − α ) V 1 − α ( x 0 ) T(x_0)\leq \frac{1}{c(1-\alpha)}V^{1-\alpha}(x_0) T(x0)≤c(1−α)1V1−α(x0)进一步,如果 S = D = R \mathbb{S}=\mathbb{D}=\mathbb{R} S=D=R, V V V是径向无界的,并且 V ˙ < 0 \dot{V}<0 V˙<0, ∀ x ∈ R \ { 0 } \forall x\in\mathbb{R}\backslash\{0\} ∀x∈R\{
0}, 则该点是全局有限时间稳定的。
证明:
由于 d V d t ≤ − c V α \frac{dV}{dt}\leq -cV^\alpha dtdV≤−cVα则 d V V α ≤ − c d t \frac{dV}{V^\alpha}\leq -cdt VαdV≤−cdt两边同时积分,可得 V 1 − α ( x ) 1 − α ∣ x 0 0 ≤ − c T ( x 0 ) . \frac{V^{1-\alpha}(x)}{1-\alpha}|^{0}_{x_0}\leq -cT(x_0). 1−αV1−α(x)∣x00≤−cT(x0).因此 1 c ( 1 − α ) V 1 − α ( x 0 ) ≥ T ( x 0 ) . \frac{1}{c(1-\alpha)}V^{1-\alpha}(x_0)\geq T(x_0). c(1−α)1V1−α(x0)≥T(x0).得证 ♠ \spadesuit ♠
定理2:考虑如下非线性系统 x ˙ ( t ) = − α x 2 − p q ( t ) − β x p q ( t ) , x ( 0 ) = x 0 \dot{x}(t)=-\alpha x^{2-\frac{p}{q}}(t)-\beta x^{\frac{p}{q}}(t),\quad x(0)=x_0 x˙(t)=−αx2−qp(t)−βxqp(t),x(0)=x0其中 α , β > 0 \alpha,\beta>0 α,β>0, p , q p,q p,q满足 q > p > 0 q>p>0 q>p>0是奇数。则该非线性系统是固定时间稳定的,并且稳定时间为
T ( x 0 ) ≤ T max : = q π 2 α β ( q − p ) . T(x_0)\leq T_{\max}:=\frac{q\pi}{2\sqrt{\alpha\beta}(q-p)}. T(x0)≤Tmax:=2αβ(q−p)qπ.证明:令李雅普诺夫函数为 V ( x ) = x 2 ≥ 0 V(x)=x^2\geq 0 V(x)=x2≥0. 对 V V V关于时间求微分可得
V ˙ = 2 x ( − α x 2 − p q − β x p q ) = − 2 α ( x 2 ) 3 q − p 2 q − 2 β ( x 2 ) p + q 2 q = − 2 ( α V q − p q + β ) V p + q 2 q \begin{aligned} \dot{V}=&2x(-\alpha x^{2-\frac{p}{q}}-\beta x^{\frac{p}{q}})\\ =&-2\alpha (x^2)^\frac{3q-p}{2q}-2\beta(x^2)^{\frac{p+q}{2q}}\\ =&-2(\alpha V^{\frac{q-p}{q}}+\beta)V^{\frac{p+q}{2q}} \end{aligned} V˙===2x(−αx2−qp−βxqp)−2α(x2)