【数据集NO.2】工业检测数据集汇总(缺陷、纹理等检测)

本文汇总了多种工业场景下的表面缺陷检测数据集,包括钢材、铝型材、带钢等多个领域的具体应用案例,适用于不同类型的缺陷检测研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

数据集对应应用场景,不同的应用场景有不同的检测难点以及对应改进方法,本系列整理汇总领域内的数据集,方便大家下载数据集。关注免费领取整理好的数据集资料!


一、东北大学钢材表面缺陷数据集

简介:该数据集是东北大学宋克臣团队制作而成,是钢材表面缺陷数据集,共有1800张图片,包含六种类型共有六种缺陷:
crazing,inclusion,patches,pitted_surface,rolled-in_scale,scratches
下载地址:https://aistudio.baidu.com/aistudio/datasetdetail/158165
问题描述:钢材表面缺陷数据集
转换好格式数据集:关注后私信领取
链接:https://pan.baidu.com/s/1IdMkrvQ4pfDLswY0c-DUTw
提取码:关注后私信告知
样图如下:
在这里插入图片描述

二、天池铝型材表面缺陷数据集

大赛数据集里有1万份来自实际生产中有瑕疵的铝型材监测影像数据,每个影像包含一个或多种瑕疵。供机器学习的样图会明确标识影像中所包含的瑕疵类型。下载链接【点此处即可下载】
转换好格式数据集:关注后私信领取

在这里插入图片描述
样图如下:
在这里插入图片描述
在这里插入图片描述

三、Severstal 带钢缺陷数据集

该数据集中提供了四种类型的带钢表面缺陷。训练集共有12568张,测试集5506张。图像尺寸为1600×256。
下载链接【点此处即可下载】
转换好格式数据集:关注后私信领取
在这里插入图片描述
在这里插入图片描述

四、UCI 带钢缺陷数据集

该数据集包含了7种带钢缺陷类型。这个数据集不是图像数据,而是带钢缺陷的28种特征数据,可用于机器学习项目。
分类:1.Pastry2.Z_Scratch3.K_Scatch4.Stains5.Dirtiness6.Bumps7.Other_Faults
下载链接【点此处即可下载】接
转换好格式数据集:关注后私信领取
在这里插入图片描述# 四、UCI 带钢缺陷数据集

五、磁瓦缺陷数据集

中国科学院自动所一个课题组收集的数据集,是“Saliency of magnetic tile surface defects”这篇论文的数据集。收集了6种常见磁瓦缺陷的图像,并做了语义分割的标注。
分类:1.Pastry2.Z_Scratch3.K_Scatch4.Stains5.Dirtiness6.Bumps7.Other_Faults
下载链接【点此处即可下载】
转换好格式数据集:关注后私信领取
在这里插入图片描述
在这里插入图片描述

六、RSDDs铁轨表面缺陷数据集

RSDDs数据集包含两种类型的数据集:第一种是从快车道捕获的I型RSDDs数据集,其中包含67个具有挑战性的图像。
第二个是从普通/重型运输轨道捕获的II型RSDDs数据集,其中包含128个具有挑战性的图像。
两个数据集的每幅图像至少包含一个缺陷,并且背景复杂且噪声很大。
RSDDs数据集中的这些缺陷已由一些专业的人类观察员在轨道表面检查领域进行了标记。
下载链接【点此处即可下载】
转换好格式数据集:关注后私信领取
在这里插入图片描述

在这里插入图片描述

七、印刷电路板(PCB)瑕疵数据集

这是一个公共的合成PCB数据集,由北京大学发布,其中包含1386张图像以及6种缺陷(缺失孔,老鼠咬坏,开路,短路,杂散,伪铜),用于检测\分类和配准任务。
在这里插入图片描述
在这里插入图片描述
下载链接【点此处即可下载】
转换好格式数据集:关注后私信领取

八、坑洼检测数据集

目标:从道路图像中检测坑洼
应用:检测道路地形和坑洼可实现平稳行驶。
详细信息: 700个在坑洼处带有3K +注释的图像。
水坑尺寸类别
小:边界框面积<=1024px
中等:1024px<BoundingBox面积<=9216px
大:BoundingBox面积>9216px
注意:这些尺寸类别是在将图像调整为300x300像素并保持纵横比后计算的。这类似于Microsoft COCO大小度量。
下载链接【点此处即可下载】
在这里插入图片描述

在这里插入图片描述

九、Kylberg纹理检测

每个类有160个独特的纹理面片。(每个原始面片具有12个旋转的替代数据集,每个类160*12=1920个纹理面片)。
纹理补丁大小:576x576像素。
文件格式:无损压缩8位PNG。
所有补丁均以平均值127和标准偏差40进行标准化。
每个纹理类一个目录。
文件命名如下:blankt1-d-p011-r180.png,其中blankt1是类名,或原始图像样本编号(可能值area,b,c,ord),p011是补丁编号11,r180补丁旋转180度。
下载链接【点此处即可下载】
在这里插入图片描述

在这里插入图片描述

十、DAGM 2007数据集

数据集介绍:
主要针对纹理背景上的杂项缺陷。
较弱监督的训练数据。
包含十个数据集,前六个为训练数据集,后四个为测试数据集。
每个数据集均包含以灰度8位PNG格式保存的1000个“无缺陷”图像和150个“有缺陷”图像。每个数据集由不同的纹理模型和缺陷模型生成。
“无缺陷”图像显示的背景纹理没有缺陷,“无缺陷”图像的背景纹理上恰好有一个标记的缺陷。
所有数据集已随机分为大小相等的训练和测试子数据集。
弱标签以椭圆形表示,大致表示缺陷区域。
下载链接【点此处即可下载】
在这里插入图片描述
在这里插入图片描述

十一、KTH-TIPS纹理图像数据集

KTH-TIPS 是一个纹理图像数据集,在不同的光照、角度和尺度下拍摄的不同材质表面纹理图片。类型包括砂纸、铝箔、发泡胶、海绵、灯芯绒、亚麻、棉、黑面包、橙皮和饼干共10类。
下载链接【点此处即可下载】
在这里插入图片描述

在这里插入图片描述
未完待续。。。

### 天池铝型材缺陷数据集下载与使用 #### 数据集概述 天池铝型材表面瑕疵数据集旨在解决铝型材生产过程中的质量问题。该数据集中包含了多种类型的表面缺陷,如裂纹、起皮、划伤等,这些缺陷会影响最终产品的质量[^2]。 #### 数据集特点 此数据集特别适用于小目标检测和遮挡物精度提升的任务。为了方便用户快速上手,数据集已经转换成了适合YOLO模型训练的格式,可以直接用于深度学习框架下的目标检测任务[^1]。 #### 获取途径 要获取这个数据集,可以访问阿里云天池平台上的相关竞赛页面或资源分享区。通常情况下,注册并登录账号后即可免费下载所需的数据文件。具体链接可以在官方公告或者比赛详情页找到。 #### 文件结构解析 下载后的压缩包内应包含如下几个部分: - **images/**:存放原始图像文件夹; - **annotations/**:放置对应的XML标注文件以及TXT格式的边界框坐标信息; - **classes.txt** 或者类似的配置文档,列出了所有的类别标签及其编号对应关系; 对于上述提到的具体分类名称,例如`budaodian`, `tufen`等,则代表不同种类的缺陷特征[^4]。 #### 准备环境 建议先安装Python虚拟环境,并通过pip命令安装必要的库依赖项,比如OpenCV-Python, NumPy等常用工具。如果打算利用预处理脚本来批量调整图片尺寸或是增强样本多样性的话,还需要额外引入imgaug这样的第三方扩展模块。 #### 加载与查看数据 下面给出一段简单的Python代码片段用来读取一张随机选取的测试图与其相应的真值标记: ```python import os from PIL import Image import matplotlib.pyplot as plt def visualize_sample(image_path, annotation_file): img = Image.open(image_path) with open(annotation_file,'r')as f: lines=f.readlines() fig,ax=plt.subplots(1) ax.imshow(img) for line in lines: parts=line.strip().split(' ') class_id=int(parts[0]) x_center=float(parts[1])*img.width y_center=float(parts[2])*img.height width=float(parts[3])*img.width height=float(parts[4])*img.height rect=[x_center-width/2,y_center-height/2,width,height] rect_patch=patches.Rectangle((rect[0],rect[1]),rect[2],rect[3], linewidth=1,edgecolor='r',facecolor="none") ax.add_patch(rect_patch) label=str(class_id) plt.text(x_center-width/2, y_center-height/2,label,color='red') plt.show() # 假设当前目录下有解压好的data文件夹 sample_image="./data/images/sample.jpg" sample_annotation="./data/labels/sample.txt" visualize_sample(sample_image,sample_annotation) ``` 这段程序能够帮助开发者直观理解每张照片里存在的各个异常区域位置及所属类型。 #### 开始建模 当准备好所有前期工作之后就可以着手构建自己的神经网络架构了。考虑到实际应用场景中可能遇到的小样本量问题,迁移学习是一个不错的选择——基于现有的大规模公开数据集预先训练好基础权重参数,再针对特定领域微调最后一两层全连接层甚至整个卷积核权重矩阵。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值