此前出了目标检测算法改进专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读发表高水平学术期刊中的 SCI论文,并对相应的SCI期刊进行介绍,帮助大家解答疑惑,助力科研论文投稿。解读的系列文章,本人会进行 创新点代码复现,有需要的朋友可关注私信我获取。![]()
一、摘要
准确及时地检测多尺度小包含来自遥感影像的数十个像素的对象(RSI)仍然具有挑战性。大多数现有解决方案主要是 设计复杂的深度神经网络以学习强大的能力与背景分离的对象的特征表示,
这通常会导致沉重的计算负担。在本文中,我们提出了一种准确而快速的物体检测RSI 方法,名为 SuperYOLO,它融合了多模态数据并执行高分辨率 (HR) 对象检测利用辅助超分辨率的多尺度对象(SR)学习并兼顾检测精度和计算成本。首先,我们利用对称紧凑多模态融合 (MF) 提取补充信息从各种数据中改进 RSI 中的小目标检测。此外,我们设计了一个简单易懂的 SR 分支,以学习可以区分小的 HR 特征表示来自广阔背景的低分辨率物体。
二、网络模型及核心创新点
三、实验效果(部分展示)
四、实验结论
我们提案的性能和推理能力凸显SR在遥感任务中的价值,铺平道路用于多模态目标检测的未来研究。我们的未来兴趣将集中在低参数的设计上模式提取 HR 特征,从而进一步满足实时性和高精度的动机。
注:论文原文出自 SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery 本文仅用于学术分享,如有侵权,请联系后台作删文处理。
解读的系列文章,本人已进行创新点代码复现,有需要的朋友欢迎关注私信我获取❤ 。