大模型学习路径 | 3:大模型的数据采集——搜罗知识的艺术
内容要点:
一、模型为什么需要数据?数据的作用是什么?
二、大模型的所需数据与普通模型所需数据的区别和要求
三、大模型所需数据的类型及采集挑战
四、数据采集的技术分类
五、常用的大模型数据采集工具
六、确保大模型数据的质量和准确性
七、大模型数据质量的评估指标
八、合法的数据采集渠道
九、数据采集过程中的隐私和版权问题
十、如何保障数据采集过程中的质量
一、模型为什么需要数据?数据的作用是什么?
大模型的构建离不开数据,数据就如同大模型成长的养分。从本质上来说,模型本身是一种基于算法(algorithm)的架构,而数据则是赋予这个架构 “智慧” 的源泉。
(一)训练模型
通过大量的数据输入,模型能够学习到数据中的规律和模式。例如在自然语言处理(Natural Language Processing,NLP)领域,模型通过对海量文本数据的学习,能够掌握词汇的用法、句子的结构以及语言背后的语义逻辑。
(二)优化模型
在训练过程中,模型会根据数据反馈不断调整自身的参数,以减少预测误差,提高准确性。
(三)提升泛化能力
数据是模型泛化能力(Generalization Ability)的基础。泛化能力指的是模型对于未曾见过的数据的处理能力,足够多样化和丰富的数据能够让模型在面对新的场景和问题时,做出合理的推断和预测。
二、大模型所需数据与普通模型所需数据的区别和要求
(一)数据量的差异
大模型通常需要海量的数据来进行训练。与普通模型相比,大模型的数据量级往往是数量级上的超越。普通模型可能在数千条或数万条数据的基础上就能达到较好的训练效果,而大模型可能需要数百万、数千万甚至数亿条数据。这是因为大模型具有更复杂的结构和更多的参数,只有足够的数据量才能充分训练这些参数,使其达到较好的性能。
(二)数据多样性要求
大模型对数据多样性的要求极高。普通模型可能只针对特定领域或特定类型的数据进行训练,例如只处理某一类产品的用户评价数据。然而大模型往往需要涵盖多个领域的数据,包括不同主题的文本、各种各样的图像、来自不同场景的语音等。这种多样性能够让大模型学到更广泛的知识和模式,从而在处理综合性问题时更具优势。
(三)数据质量的标准
在数据质量方面,大模型和普通模型也有不同的要求。普通模型在一些情况下可以容忍一定比例的数据噪声,因为其功能相对简单,数据中的一些小瑕疵可能不会对结果产生致命影响。但大模型由于其复杂性和对结果准确性的高要求,对数据质量的把控更为严格。大模型的数据需要在准确性、完整性、一致性等方面都达到较高的标准,以避免在训练过程中产生误导,导致模型性能不佳。
三、大模型所需数据的类型及采集挑战
(一)文本数据
文本数据是大模型最为常见的数据类型之一。它包括新闻报道、学术论文、小说、博客文章、社交媒体帖子等。文本数据可以帮助大模型学习语言知识,包括词汇、语法、语义等。例如,通过对大量新闻报道的学习,大模型可以了解到当前的社会热点事件、不同领域的最新动态;对学术论文的学习有助于掌握专业知识和科学研究的方法;而社交媒体帖子则能反映出人们的日常用语习惯和流行文化趋势。
(二)图像数据
图像数据也是大模型所需的重要数据类型。它涵盖了各种各样的图像,如风景照、人物肖像、产品图片、卫星图像等。图像数据对于训练大模型进行图像识别(Image Recognition)、图像分类(Image Classification)、目标检测(Object Detection)等任务至关重要。例如,在自动驾驶领域,大模型需要通过大量的道路场景图像数据来学习识别不同的交通标志、车辆、行人等物体,以做出正确的驾驶决策。
在图像数据采集方面,其挑战不容忽视。一方面,高质量的图像数据获取成本较高,比如专业的卫星图像、医学影像等都需要专业设备拍摄且受到诸多限制。
(三)语音数据
语音数据包括人们的日常对话、演讲、广播、歌曲等。语音数据能够帮助大模型进行语音识别(Speech Recognition)、语音合成(Speech Synthesis)、语音情感分析(Speech Emotion Analysis)等任务。例如,语音助手类的大模型通过对大量用户语音数据的学习,能够准确地识别用户的语音指令,并做出相应的回复;在语音合成方面,大模型根据对语音数据的学习,能够生成自然流畅的语音。
对于语音数据采集,存在着特定的挑战。语音数据的采集受环境因素影响很大,嘈杂的环境会导致采集到的语音数据质量下降,例如在户外采集时,背景噪音可能会掩盖语音主体内容。
而且,不同地区、不同人群的语音具有不同的口音和语言习惯,要采集到具有代表性的语音数据需要覆盖广泛的地域和人群,这无疑增加了采集的复杂性和成本。
四、数据采集的技术分类
(一)主动采集技术
1. 网络爬取(Web Crawling)
网络爬取是从互联网上自动抓取数据的一种技术。通过编写特定的爬虫程序,按照预设的规则,可以从网页中提取文本、图像、链接等数据。例如,在采集新闻数据时,爬虫可以从各大新闻网站的页面中提取新闻标题、正文内容、发布时间等信息。但是,网络爬取必须遵循严格的规范,如尊重目标网站的robots.txt
文件规定,避免过度频繁地访问网站导致服务器过载。
对于动态网页,还需要采用如 Selenium 等工具结合 ChromeDriver 等来处理 JavaScript 渲染的内容,以确保能够完整地采集到数据。
2. 传感器采集(Sensor Acquisition)
在采集物理世界的数据时,传感器起着至关重要的作用。例如,在环境监测大模型中,温度传感器(Temperature Sensor)、湿度传感器(Humidity Sensor)、空气质量传感器(Air Quality Sensor)等可以实时采集环境数据。在智能交通领域,摄像头(Camera)、雷达(Radar)等作为传感器可以采集车辆的行驶速度、位置、周围环境等数据。这些传感器采集到的数据往往需要经过一定的预处理,如模数转换(Analog - to - Digital Conversion)、数据压缩(Data Compression)等,才能被大模型所使用。
(二)被动采集技术
1. 用户上传数据(User - uploaded Data)
许多平台依赖用户主动上传数据来丰富数据集。例如,在线翻译平台鼓励用户上传翻译文本,这些文本数据可以用于训练自然语言处理大模型。社交媒体平台上,用户上传的照片、视频、状态等都成为了数据的来源。然而,这种方式的数据质量可能参差不齐,并且需要考虑用户隐私和版权问题,例如,在使用用户上传的带有个人面部特征的照片时,需要获得用户的授权。
2. 日志记录数据(Log Recorded Data)
系统日志记录了用户与系统交互的各种信息。在互联网服务中,服务器日志可以记录用户的访问时间、访问页面、操作行为等数据。对于大模型而言,这些日志数据可以反映用户的行为模式和偏好。例如,电商平台的服务器日志可以提供用户的浏览和购买行为数据,通过分析这些数据,可以构建用户行为预测大模型。但是,日志数据往往是海量的,需要进行有效的筛选和处理才能提取出有价值的数据。
五、常用的大模型数据采集工具
第一梯队(国际知名大公司相关)
1. Tesseract - OCR
-
简介:由 Google 支持的开源光学字符识别(Optical Character Recognition,OCR)引擎。
-
提供商:Google(原由 HP 实验室开发,后被 Google 收购)
-
特点:支持多种语言,文字识别准确率高,在图像文字数据提取方面应用广泛。
2. Puppeteer
-
简介:由 Google Chrome 团队推出的用于控制 Chrome/Chromium 的 Node 库。
-
提供商:Google Chrome 团队
-
特点:能够通过模拟用户操作获取动态网页数据,还可进行页面截图、PDF 生成和自动化测试等操作。
3. Logstash
-
简介:著名开源数据栈 ELK(Elasticsearch,Logstash,Kibana)中的重要数据处理组件。
-
提供商:Elastic 公司
-
特点:基于 JRuby 开发且依赖 JVM(Java Virtual Machine),可实现数据的收集、清洗、变形和存储索引操作,在 Elasticsearch 数据系统中作用显著。
第二梯队(有一定规模和行业影响力的公司)
1. 亮数据 (Luminati)
-
简介:专业提供数据采集工具和服务的公司产品。
-
提供商:亮数据公司(Luminati Networks)
-
特点:具备多种代理服务,相关工具可高效采集和解锁网站数据,有助于加速大模型训练。
2. Fluentd
-
简介:由专业公司支持开发的开源数据收集架构。
-
提供商:由 Treasure Data 公司支持开发
-
特点:采用 C/Ruby 开发,通过 JSON(JavaScript Object Notation)文件统一日志数据,具有丰富的插件,方便进行日志数据的分类处理。
第三梯队(专业的数据采集工具提供商)
1. Postman
-
简介:知名的 API 调试工具。
-
提供商:Postman 公司
-
特点:支持多种 HTTP 请求方法和丰富的请求配置选项,对于通过 API 获取数据的调试和测试非常有用。
2. 八爪鱼
-
简介:由专业软件公司开发的可视化免编程网页采集软件。
-
提供商:深圳视界信息技术有限公司
-
特点:云采集功能强大,支持关机和定时采集,无需编程知识即可操作,适合非技术用户。
第四梯队(在特定领域有影响力的数据采集软件)
1. 火车头
简介:由软件公司开发的互联网数据抓取、处理等多功能软件。
-
提供商:上海乐思软件有限公司
-
特点:能够抓取网页上散乱分布的数据并进行深入分析处理,支持 PHP 和 C# 插件扩展,适合有编程基础的用户。
2. 简数采集器
-
简介:具有分布式云采集功能的数据采集器。
-
提供商:广州简数信息科技有限公司
-
特点:多节点云采集确保采集的稳定性和速度,无需挂机,支持数据批量处理和调用接口分析数据。
3. Content Grabber
-
简介:支持智能抓取的网页爬虫软件。
-
提供商:Content Grabber 公司
-
特点:其运行环境可用于开发、测试和产品服务器,用户可通过 C# 或VB.NET编写脚本控制爬虫程序。
4. Import.io
-
简介:专注于网页数据抓取的工具。
-
提供商:Import.io 公司
-
特点:可采集采用 Ajax、JavaScripts 技术的网页数据,能提供广泛的网页数据服务。
六、确保大模型数据的质量和准确性
(一)数据采集阶段
- 选择可靠的数据来源
-
官方和权威机构数据:例如政府部门发布的统计数据、专业科研机构公布的研究成果等。这些数据通常经过了严格的审核和验证,具有较高的准确性。
-
行业知名企业数据:在特定领域,行业内领先企业的数据质量往往有保障。
- 规范数据采集方法
-
网络爬取遵循规则:在进行网络爬取数据时,严格遵守目标网站的
robots.txt
文件规定,合理控制爬取频率。 -
传感器采集校准维护:当使用传感器采集数据时,要定期对传感器进行校准和维护。
-
用户上传数据审核:对于依赖用户上传数据的平台,建立严格的数据审核机制。
(二)数据预处理阶段
- 数据清洗
-
去除重复数据:通过数据比对算法,识别并删除数据集中的重复记录。
-
处理缺失值:对于存在缺失值的数据,采用合适的方法进行处理。
-
纠正错误数据:通过数据验证规则和算法来发现并纠正错误数据。
- 数据标准化和归一化
-
格式标准化:将不同格式的数据统一为适合大模型处理的格式。
-
数值归一化:对于数值型数据,将其范围归一化到特定区间。
(三)数据标注阶段
-
专业人员标注:对于需要标注的数据,聘请具有专业知识的人员进行标注。
-
建立标注标准和规范
-
制定严格的数据标注标准和操作规范。
-
进行标注质量审核:对已标注的数据进行抽样审核,确保标注质量符合要求。
(四)数据验证阶段
- 内部验证机制
-
交叉验证:将数据集分成多个子集,通过轮流将不同子集作为验证集来评估模型在未见过的数据上的表现,从而验证数据的质量。
-
模型评估指标监控:在模型训练过程中,持续监控如准确率、召回率等评估指标。
- 外部验证和反馈
-
与第三方数据对比验证:将采集和处理的数据与第三方权威数据进行对比。
-
用户反馈收集:在大模型应用过程中,收集用户反馈来发现数据质量问题。
七、大模型数据质量的评估指标
(一)准确性
-
标注准确性:对于经过标注的数据,标注准确性是指标注结果与真实情况的符合程度。
-
数据内容准确性:数据本身所包含的信息要准确反映客观事实。
(二)完整性
-
数据记录完整性:指数据集中的每条记录是否包含了应有的信息。
-
数据集完整性:整个数据集是否涵盖了所有必要的数据类型和范围。
(三)一致性
-
内部一致性:数据集中的数据在逻辑上相互一致,不存在矛盾。
-
外部一致性:数据与外部相关数据保持一致。
(四)时效性
-
数据更新时效性:数据是否及时更新,以反映最新的情况。
-
数据有效期:数据在多长时间内有效,超过有效期的数据可能不再适用。
(五)代表性
-
数据分布代表性:数据的分布能够代表实际情况中的数据分布。
-
样本代表性:样本数据能够代表总体数据的特征。
八、合法的数据采集渠道
(一)网络爬取的规范
网络爬取是获取数据的一种常见方式,但必须遵循严格的规范。首先,在进行网络爬取之前,需要明确目标网站的爬取规则。许多网站都有自己的 robots.txt 文件,该文件规定了哪些内容可以被爬取,哪些不可以。
其次,在爬取过程中,不能对目标网站的服务器造成过大的负载,避免影响网站的正常运行。同时,对于爬取到的数据,不能随意篡改或滥用,必须确保数据的完整性和真实性。
(二)公开数据集的利用
公开数据集是大模型数据采集的重要来源之一。许多科研机构、企业和政府部门都会发布一些公开数据集,这些数据集涵盖了不同领域和类型的数据。例如,在计算机视觉领域,有许多用于图像分类和目标检测的公开数据集;在自然语言处理领域,也有大量的文本数据集可供使用。利用公开数据集不仅可以节省数据采集的成本和时间,而且这些数据集往往经过了一定的筛选和标注,质量相对有保障。
九、数据采集过程中的隐私和版权问题
(一)隐私问题
对于涉及个人隐私的数据,如个人身份信息、医疗记录、金融数据等,必须严格保护。在采集和使用这些数据时,需要获得数据所有者的明确授权。例如,在采集用户语音数据时,如果这些数据可能包含用户的个人隐私信息,那么就需要向用户说明数据的用途,并获得用户同意。同时,在数据存储和处理过程中,也要采取加密(Encryption)等安全措施,防止数据泄露。
(二)版权问题
数据采集过程中还需要注意版权问题。无论是文本、图像还是语音数据,都可能受到版权保护。如果未经版权所有者许可,随意采集和使用这些数据,就可能构成侵权行为。对于有版权的数据,要么获得版权所有者的授权,要么选择在版权允许的范围内使用,如使用一些具有开源版权的数据。在使用公开数据集时,也要仔细查看数据集的版权声明,确保使用方式符合规定。
十、如何保障数据采集过程中的质量
(一)数据清洗
数据采集后,往往需要进行数据清洗。数据清洗包括去除重复数据、纠正错误数据、填充缺失数据等操作。例如,在文本数据中,可能存在拼写错误、格式不统一等问题,通过数据清洗可以提高数据的质量。在图像数据中,可能存在模糊不清、标注错误的图像,需要进行筛选和修正。
(二)数据标注
对于一些需要特定任务训练的大模型,数据标注是保障数据质量的重要环节。例如在图像识别模型中,需要对图像中的物体进行准确标注,以便模型学习。数据标注工作需要专业的人员按照一定的标准进行操作,以确保标注的准确性和一致性。
(三)数据验证
在数据采集和处理过程中,还需要进行数据验证。通过建立数据验证机制,对采集到的数据和经过处理的数据进行质量检查。例如,采用抽样检查的方式,查看数据是否符合预期的质量标准,如数据的准确性、完整性等。如果发现数据质量不符合要求,就需要及时进行调整和处理。
数据采集是大模型构建过程中的关键环节,它涉及到数据类型的选择、采集渠道的合法性、隐私和版权的保护以及数据质量的保障等多方面的问题。只有在数据采集过程中做到科学、规范、严谨,才能为大模型的训练提供优质的 “原料”,使其发挥出强大的功能。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走: