DeepSeek接入个人知识库,最新安装包发布,确实可以封神了!

今天跟大家汇报下DeepSeekMine软件最新进展,同时发布最新版V6.1软件安装包。

对于第一次看到 DeepSeekMine 的朋友,简单介绍一下,这是我们一直在开发的个人知识库工具,它集成了外部知识检索与大模型生成能力。

如下图所示,左侧是软件加载的个人本地知识文件列表,右侧用户输入提问,若提问命中了文件列表的某些文件的某些文本片段,则自动整合这些片段,这些技术一般简称称为RAG(检索增强),然后注入到大模型回答用户问题:

图片

再强的大模型如果没有机会学习个人本地文件知识,也无法更好回答此部分问题,但是本地知识库软件能有机会吸收个人文件知识,因此回答问题质量会更好。

1 软件特点

DeepSeekMine软件主要三个特点:纯离线,速度快,够精准

关闭网线,DeepSeekMine软件一样运行,如下图所示精准检索Excel文件的数据:

图片

目前很多知识库类软件要求必须在线,比如比较优秀的知识库类软件腾讯的ima,纳米AI,必须要把文档上传到他们的服务器,才可以执行检索或生成任务,如下图所示,断网后纳米知识库无法回答问题:

图片

云端服务器资源充沛,实现检索快、精度高,更容易一些。做纯离线的知识库软件,因为本地环境计算资源有限,还想速度快、精度高,挑战就会更大一些。

在过去两个月多,我们在思考如何设计既快又准的本地RAG方案和算法,到目前V6.1优化后,无论上传文件,检索文件,回复提问,都做到秒级回复。

为了证明这点,我分别上传三个GIF图来证明,因为公众号上传GIF帧数有限制,只能上传前面几帧。1)上传文件演示,如下GIF图无任何加速,全部保持原始速度:

图片

2)V6.1新增对文件夹的托管支持,如下GIF图演示了文件夹内10个文件的批量上传速度:

图片

3)回答速度如下GIF图所示,测试电脑是mac pro m1,GIF录制全部保持原始速度,此时我的电脑运行内存已经所剩很少,否则比下面速度还会快:

图片

2 软件升级

V6到V6.1我们主要做了下面这些升级,这些需求大部分都来自关注我的读者,根据所提需求人数,切合度等优先级逐步升级。

1)无法启动问题。V6部分用户出现无法启动,或第一次启动慢的问题,这是这次升级最高优先级的,重点优化了这个问题,根据内测反馈,V6.1将会基本彻底解决这些问题。群内两位用户反馈结果,如下图所示:

图片

2)新增支持文件夹托管上传。如上面GIF演示所示,同时对文件夹托管页面做了优化,显示文件上传状态(成功,失败,失败的话原因是什么更方便大家跟我们反馈问题):

图片

3)文件图标优化。优化为大家最熟知,并且软件内部全部做了统一,如下图所示,方便大家辨别:

图片

4)RAG精度问题。提升精度作为DeepSeekMine软件一直优化的事项,这次升级重点优化了对Excel文件的检索精度,如下提问光明企业薪资表员工收入最高的是谁?工资是多少?如下所示左侧显示命中的文本片段,右侧为大模型的回答:

图片

为了验证精确度,我们对表格的数据做排序检索,和上面大模型的回答比对:

图片

得出结论,DeepSeekMine软件准确检索到了本地个人知识库文件,精准的回答了用户提问。

5)RAG多轮回复精度。相比于提升单轮回复精度,多轮回复精度提升更有挑战,用户连续提问下,如何利用检索增强避免出现语义偏移,也是一个比较难的问题,如下所示DeepSeekMine最新版本增强了多轮回复精度,即便提问不够准确,也能利用历史会话自动增强:

图片

6)Chat会话增加停止会话功能,支持随时停止回复,如下所示:

图片

7)右侧命中文本片段面板,做了格式优化,优化后如下图所示:

图片

8)笔记面板支持隐藏,如下图所示未隐藏视图,点击箭头所示的隐藏图标:

图片

隐藏后如下图所示:

图片

以上就是本次优化的主要事项,其他细节由于篇幅问题,不再展示,大家感兴趣的想获取的,可以添加下方回复:DeepSeekMine

3 下一步计划

1)继续优化RAG精度。调研目前最先进的RAG方法,找到最适合本地部署,既快又更准的算法方案:

图片

2)RAG回答精度与大模型能力也息息相关,如下图所示,1.5b回答会出现幻觉:

图片

7B就会好很多,回答更加精准:

图片

对于更加复杂的任务,更有必要使用云端更强大模型,如下使用云端满血DeepSeek-r1的回答质量;

图片

基于此,后面新版本会考虑接入更多强大的大模型API,供大家方便实用。

3)软件详细使用文档,常见问题及解决措施。团队小伙伴已经准备好,等下一版本我们彻底集成到软件里后,尽快给大家发出来。

4)更多界面显示优化,大家留言区反馈问题收集和迭代事项等。

总结一下

DeepSeekMine 是一款集成 RAG 与大模型的个人本地知识库工具,支持纯离线运行。

基于测试的机器mac m1, win10,最新版 V6.1 实现上传、检索、回答全流程秒级响应。关于机器配置,最好内存8G以上,四核及以上CPU,无GPU也能运行。

新增文件夹托管、图标统一、多轮问答增强等关键功能。重点优化 Excel 检索精度与启动稳定性,解决多项用户反馈问题。后续将持续优化 RAG 精度,并探索更强模型接入与界面升级。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值