问题 1:干扰信号的分析和识别 此文章仅显示部分代码
2024五一赛C题保姆级建模思路35页+1-3问可执行代码(py+mtlab)+后续成品论文+各类可视化图表https://www.jdmm.cc/file/2710587
1.1 建立数学模型,分析干扰信号
1.2 利用特征识别干扰信号的时间区间
. 模型构建:利用分类或聚类模型(如支持向量机、随机森林、K-均值聚类等)来根据特 征对数据进行标注。
. 识别与验证:对 2022 年的数据应用模型,识别出含干扰信号的时间区间,并进行验证。
特征提取:从“ 附件一 EMR” 中提取电磁辐射信号的统计特征。
模型训练:使用提取的特征和类别标签来训练一个分类模型。
干扰识别:应用模型于“ 问题一 EMR 检测时间”数据,以识别并记录干扰信号。
时间区间确定:找出最早的 5 个干扰信号所在的时间区间。
问题 2:前兆特征信号的分析和预测
2.1 建立数学模型,分析前兆特征信号
. 数据预处理:同上,进行必要的数据清洗和预处理。
. 特征提取:提取表征前兆特征信号的变化趋势的特征,可能包括:
1. 趋势分析:线性回归分析或其他趋势检测方法来确定信号的增长或下降趋势。
2. 突变点检测:使用变点检测算法来识别信号中的突变点,这些点可能预示着冲击地 压的前兆。
3. 周期性分析:检查信号的周期性变化,以辨认与常规周期性波动不同的特征。
问题二初始数据暂没有绘制可视化进行表达,论文中会出现
2.2 利用特征识别前兆特征信号的时间区间
. 模型构建:使用适合时间序列预测的模型,如 ARIMA 模型、LSTM 神经网络等。
. 预测与验证:对指定时间段的数据应用模型,预测并识别前兆特征信号的时间
问题 3:实时预警系统的建立
. 数据同步:对附件 3 中的数据进行时间同步,以保证在分析时数据的连续性。
. 概率模型:建立一个概率模型(如贝叶斯模型),来估计每次数据采集时刻前兆特征信 号出现的概率。
. 实时监测与预警:构建一个监测系统,该系统可以在每次数据采集时实时计算前兆特征 信号的概率,并在超过预设阈值时发出预警。
对 EMR 数据进行处理,计算每个数据点的滑动平均值和滑动标准差。这些统计量有助于捕 捉数据的趋势和波动性,是模型训练的关键特征。
同时计算每个数据点的能量(信号幅度的平方),这有助于量化信号的强度。
使用筛选后的数据训练一个随机森林模型。训练过程中,模型将学习如何根据输入的滑动平 均值、滑动标准差和能量来预测数据点的类别
加载新的测试数据集,并对其进行与训练数据集相同的特征提取。使用训练好的模型对测试 数据中的最后一个数据点进行预测,确定这一时刻前兆特征信号的出现概率。
3 对应代码
Matalb:”3 、3 问题三五个 AE 概率” “3 、第一个 EMR 概率” ““3.1 问题三五个 EMR 概率结果 ” Python 代码有误 明早更新。
结果表