用YOLOv5训练自己的数据集(VOC格式)

本文介绍了如何使用Labelimg软件进行图像标注,按照规范整理数据集,包括XML文件的存放,以及如何将数据集划分为训练、验证和测试集,同时详细说明了如何通过Yolov5进行模型训练,涉及XML转txt文件和配置修改的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标注数据及准备自己的数据集

按照labelimg软件要求进行标注,此次项目数据已标好,按照软件要求存放照片和标注文件(xml),检查一下标注效果。

检查数据集

使用脚本检查数据集的标注类别及其他信息

参考链接:

【目标检测】根据xml统计VOC数据集各类别标注实例数量_统计xml数据集信息_ericdiii的博客-CSDN博客

将数据集划分为训练集、验证集、测试集

参考链接:

Yolov5训练自己的数据集(超详细)_yolov5训练自己数据集_一位安分的码农的博客-CSDN博客

生成4个txt文件,每个文件存储有不同图片的名称

将xml文件转化为txt文件,并生成由训练集、验证集、测试集图片路径汇总的txt文件

修改配置,开始训练

### 使用YOLOv11训练自定义VOC格式数据集 #### 准备工作环境 为了顺利使用YOLOv11训练自定义的VOC格式数据集,需先安装必要的依赖项并下载YOLOv11源码。通常情况下,建议创建一个新的虚拟环境以避免与其他项目发生冲突。 ```bash conda create -n yolov11 python=3.8 conda activate yolov11 pip install -r requirements.txt ``` #### 数据集准备 对于VOC格式数据集,其目录结构应遵循特定模式以便于框架识别和处理: - `images` 文件夹内放置所有的图像文件; - `annotations` 存储对应的XML标注文件; - `ImageSets/Main` 下则保存用于指定哪些样本属于训练集、验证集或测试集的文字列表文件[^2]。 #### 修改配置文件 针对YOLOv11而言,在开始训练前还需要调整几个重要的参数设定。这主要包括但不限于以下几个方面: - **模型架构**: 如果有特殊需求可编辑`.yaml`文件中的网络层设计部分。 - **超参设置**: 如学习率(`lr`)、批次大小(`batch-size`)等均可以在相应的Python脚本中找到并更改[^3]。 ```python # train.py 中的部分代码片段展示 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='yolov11_training.pt') parser.add_argument('--cfg', type=str, required=True) parser.add_argument('--data', type=str, required=True) parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=16) opt = parser.parse_args() ``` #### 开始训练过程 当一切准备工作完成后就可以启动实际的训练流程了。通过命令行调用`train.py`即可执行此操作,并传入之前提到的各项必要参数作为输入选项。 ```bash python train.py --img 640 --batch 16 --epochs 50 --data mydata.yaml --cfg models/yolov11.yaml --weights '' --cache ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值