ubuntu安装NVIDIA驱动、CUDA及CUDNN

第一步:检查/安装NVIDIA驱动

        首先打开终端打开终端输入nvidia-smi测试是否安装了驱动,如果成功驱动,则会显示下图这样的信息,这里可以看到我的驱动的版本是535,cuda最高支持12.2。

        如果没有正常显示,则需要首先安装驱动,最简单的方法是点开ubuntu自带的 Software & Updates,点进 Additional Drivers里,选一个新一点的驱动,然后点击 Apply Changes应用(如果应用失败,试试选择其他的,比如这里我们选择535版本的),应用完成后一般需要重启电脑(直接reboot),重新开机后终端输入nvidia-smi正常即安装完毕。

第二步:安装CUDA

         当然,你先检查一下是否有cuda,终端输入nvcc- V,如果正常显示版本等信息,则已经安装了不需要再安装,如果提示要apt install,则需要我们来安装对应版本的cuda。

        点开这个英伟达网站的链接CUDA Toolkit Archive | NVIDIA Developer,找到你之前看到的最高支持的cuda版本之下的cuda toolkit,比如我最高支持12.2,那么我可以下载12.2及以下的cuda,这里我们就选择12.2的。

        然后进入到这个页面选择适配你的配置,依次把下面的两行代码复制到终端,其实这里建议看一下那个驱动版本和自己的驱动是否一样,比如这里是535,和我们之前安装的驱动是一样的就ok。

        在执行run文件后等一阵子会出现一个选择界面,注意这里需要把driver勾选掉,不需要勾选安装它,因为我们之前已经安装过,其他的就继续就好,再等一阵子就安装好了,安装成功会提示这个:

        之后还需要添加一下环境变量,首先输入:

sudo vim ~/.bashrc

        然后在最后一行输入(注意,这里的cuda-12.2应输入你自己下载的cuda版本,你安装的是12.1则把下面代码里的cuda-12.2改为cuda-12.1就行)

export PATH="/usr/local/cuda-12.2/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH"

        保存退出,然后在终端source ~/.bashrc一下,最后输入nvcc -V,显示版本号等信息就安装成功了。

        对了,这里我的电脑出现一个问题是没有软连接,就是没有 /usr/local/cuda 这个文件夹,但是有 /usr/local/cuda-12.2 文件夹,需要手动创建一个软连接,不然后面会有莫名的no such file错误,终端命令如下,这里的cuda版本记得改成自己的:

sudo ln -s /usr/local/cuda-12.2 /usr/local/cuda

第三步:安装CUDNN

        如果没有软连接的看一下上面记得先链接上,不然你没有 /usr/local/cuda 这个文件夹。

        记得我们之前的最高支持的cuda版本(我的是12.2),进入官网cuDNN Archive,找你对应的版本,下载deb那个,比如我的:

        下载好了后进入到你下载的目录下,执行命令安装,这里的版本号和自己的对应好。

sudo dpkg -i cudnn-local-repo-ubuntu2204-8.9.6.50_1.0-1_amd64.deb

        然后中间会弹出一个提示,需要你输入命令,跟着输入就好

sudo cp /var/cudnn-local-repo-ubuntu2204-8.9.6.50/cudnn-local-1998375D-keyring.gpg /usr/share/keyrings/

        若没有显示提示命令则执行通用命令:

sudo cp /var/cudnn-local-*/cudnn-*-keyring.gpg /usr/share/keyrings/

        然后进入到文件夹中,依次把三个包都安装好就行,命令如下:

cd /var/cudnn-local-repo-ubuntu2204-8.9.6.50/
sudo dpkg -i libcudnn8_8.9.6.50-1+cuda12.2_amd64.deb
sudo dpkg -i libcudnn8-dev_8.9.6.50-1+cuda12.2_amd64.deb
sudo dpkg -i libcudnn8-samples_8.9.6.50-1+cuda12.2_amd64.deb

        这样就安装完成了,如果想要验证是否安装成功的话,可以执行如下命令,这会把官方sample的文件移到你的home目录下,然后进行编译,最后运行。

cd /usr/src/cudnn_samples_v8
cp -r /usr/src/cudnn_samples_v8/ $HOME
cd ~/cudnn_samples_v8/mnistCUDNN/
make clean && make
./mnistCUDNN

        最后返回 Test passed! 则证明安装成功。若出现其他错误请参考下官方文档Installing cuDNN on Linux — NVIDIA cuDNN v9.1.1 documentation

<think>好的,用户的问题是关于NVIDIA驱动CUDA驱动的区别、兼容性以及安装配置方法。我需要先明确这两个组件的定义和它们之间的关系。 首先,NVIDIA驱动程序是操作系统与GPU硬件之间的桥梁,负责让系统识别并使用显卡。而CUDA驱动属于CUDA Toolkit的一部分,提供开发者访问GPU计算资源的API。用户可能混淆了这两个概念,需要明确它们的不同角色。 接下来,兼容性方面,CUDA版本需要与NVIDIA驱动版本匹配。根据引用[1],驱动太新可能导致旧版CUDA安装失败,比如2023年的新驱动可能不支持2019年的CUDA 10.1。因此,安装时需要检查版本对应表,确保驱动支持所需的CUDA版本。 关于安装方法,用户提到在Ubuntu系统中遇到的问题,引用[2]和[3]提到了使用PPA或官网下载驱动的方法。需要注意卸载旧驱动、禁用nouveau驱动等步骤,这些是关键点,避免安装冲突。 用户可能遇到的问题包括安装过程中卡在兼容性检查,或者版本不匹配导致失败。需要分步骤指导安装流程,强调版本选择和系统配置的重要性。同时,可能需要解释如何验证安装成功,比如使用nvidia-smi和nvcc命令。 最后,生成的相关问题要围绕常见安装问题、版本选择、多版本管理等,帮助用户进一步解决问题。需要确保回答结构清晰,步骤详细,并引用提供的资料作为支持。</think>### NVIDIA驱动程序与CUDA驱动的区别及兼容性 #### 1. **核心区别** - **NVIDIA驱动程序**:是操作系统与GPU硬件之间的“桥梁”,负责基础图形渲染和计算功能。它通过内核模块直接控制GPU硬件,版本号如`535.86.10`[^1]。 - **CUDA驱动**:属于CUDA Toolkit的一部分,提供开发者调用GPU计算资源的API(如`libcuda.so`)。CUDA Toolkit包含编译器、库和工具链,版本号如`CUDA 12.2`[^3]。 #### 2. **兼容性规则** - **版本匹配**:CUDA Toolkit需要特定最低版本的NVIDIA驱动支持。例如: $$ \text{CUDA 11.8} \rightarrow \text{驱动版本≥520.61.05} $$ $$ \text{CUDA 10.1} \rightarrow \text{驱动版本≥418.96} $$ 若驱动过新(如2023年的驱动安装2019年的CUDA 10.1),可能导致兼容性检查失败。 - **长期支持**:新版驱动通常向前兼容旧版CUDA,但跨版本过大时可能失效(如驱动版本与CUTA相差4年)。 --- ### 安装与配置方法(以Ubuntu为例) #### 步骤1:安装NVIDIA驱动 1. **禁用开源驱动**: 编辑文件`/etc/modprobe.d/blacklist-nouveau.conf`,添加: ```plaintext blacklist nouveau options nouveau modeset=0 ``` 执行`sudo update-initramfs -u`并重启。 2. **安装驱动**: - **推荐方法**:通过官方PPA安装稳定版本: ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update sudo apt install nvidia-driver-535 # 根据CUDA需求选择版本 ``` - **验证**:执行`nvidia-smi`,输出应包含GPU信息。 #### 步骤2:安装CUDA Toolkit 1. **下载对应版本**: 从[NVIDIA官网](https://developer.nvidia.com/cuda-toolkit-archive)选择与驱动兼容的CUDA版本(如驱动535支持CUDA 12.0+)。 2. **执行安装**: ```bash sudo sh cuda_12.2.0_535.86.10_linux.run ``` - 提示:**取消勾选驱动安装选项**(避免覆盖现有驱动)[^3]。 3. **环境配置**: 在`~/.bashrc`中添加: ```bash export PATH=/usr/local/cuda-12.2/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH ``` #### 步骤3:验证安装 - **CUDA版本**:`nvcc --version` - **驱动兼容性**:检查`nvidia-smi`顶部显示的CUDA版本是否≥Toolkit版本。 --- ### 常见问题解决 - **安装卡在兼容性检查**:可能因重复安装相同CUDA版本或驱动过旧,彻底卸载旧版本后重试。 - **内核与驱动不兼容**:升级驱动至支持当前内核的版本(如通过PPA安装新版驱动)[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值