验证性因子分析(二)

该文章深入探讨了效度分析,特别是结构效度在问卷有效性分析中的重要性,强调验证性因子分析作为评估量表结构效度的有效方法。文章通过具体的案例分析,详细阐述了如何在AMOS软件中构建和检验模型,并提供了汇报模板,包括因子载荷、CR值、AVE值等关键指标,以及区别效度的检验过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、效度分析

效度分析(即问卷有效性分析)是指测量结果与试图要达到的目标之间的接近程度,即一个测验对其所要测量的理论结构或特质测量到什么程度的估计,其中结构效度是最强有力的效度测定程序,该方法可客观地观察测量结果的数据结构与问卷的设计是否相符,它是指测验能说明理论构想的结构或特质的程度,或者用某种结构或特质来解释测量分数的恰当程度,其着重点是测验本身、测验赖以编制起来的心理结构或特质能力。用因子分析方法来评价量表的结构效度是一个比较公认的方法,而因子分析可以分为探索性因子分析与验证性因子分析(李跃平和黄子杰,2007)。一般针对成熟学者量表,我们采用验证性因子分析即可。

图1 效度分析程序

二、具体情况具体分析

在上一篇文章中,我们主要描述了第一种情况,即问卷中没有多维度量表,也不存在包含四项及以上题项的维度,本文将继续就具体情况进行分析。

第一类:假设模型中所有变量都为单维度量表

情况二:不妨假设有自变量EL,因变量EE,中介变量OI,且三个变量都为单维度量表,其中EL有五个题项,EE有四个题项,OI有三个题项。

表1 题项情况(纯属虚构)
变量 维度 题项
A 1 5
B 1 4
C 1 3

第一步:应用AMOS 23.0,在绘图区构建模型如下。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨笨脑袋瓜子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值