人工智能的最新进展引入了强大的多模态模型,能够处理和生成文本和视觉数据。这些功能对医疗保健应用具有重要的前景,特别是在放射学领域。视觉语言模型(VLMs)可以执行诸如从医学图像生成放射学报告、回答有关这些图像的视觉问题以及检测放射学报告和图像之间的差异等任务。尽管取得了这些进展,但这些应用的临床效用仍有待探索。本研究旨在通过识别和设计与放射学临床相关的视觉语言模型交互,并通过与放射科医生和临床医生的合作来评估其潜在价值和挑战,从而弥合这一差距。
放射学是医疗中的一个关键领域,它在很大程度上依赖于医学图像的解释来为患者的诊疗提供信息。人工智能的进步,特别是在大语言模型和基于视觉的模型方面,有可能通过提高效率、改善准确性和患者整体诊疗来优化放射学工作流。然而,由于人工智能性能不一致、对人工智能生成的输出缺乏信任以及需要进行临床有效性试验等问题,因而将这些技术进步转化为临床实践具有挑战性。此外,医疗保健领域的人工智能开发经常与临床医务人员的实际需求和工作流相脱节而受到批评。
该研究旨在探索视觉语言模型在医疗保健中的设计空间,特别是在放射学中,从而确定临床相关的用例和设计理念。该研究采用了三阶段迭代设计过程,涉及人机交互研究人员、人工智能研究人员、放射科医生和临床医生。
研究团队采用了迭代的、多学科的设计过程,以构想临床相关的视觉语言模型交互,并共同设计了四个视觉语言模型应用概念。这些概念与13位放射科医生和临床医生进行了研究,他们共同认为视觉语言模型概念很有价值,并提出了许多设计建议。
视觉语言模型的四个主要用例是:
- 草稿报告生成:
探索AI生成的放射学报告作为“草稿”的概念,帮助放射科医生在审查和编辑过程中节省时间。
- 优化报告审查:
利用视觉语言模型的能力强化和优化临床医生审查放射学报告的体验,例如通过视觉突显报告中的异常发现。
- 视觉搜索和查询:
基于放射科医生和临床医生在线搜索相似图像的实践,探索通过视觉语言模型进行图像搜索和文本查询的潜在效用。
- 患者成像历史重要关注点:
探索从患者图像历史中提取和突出显示关键见解的能力,以支持临床决策。
这项研究强调了视觉语言模型通过提高效率、准确性和患者诊疗来改变放射学工作流的潜力。通过以人为中心的设计过程,该研究确定了有价值的用例,并为未来在放射学和医疗保健领域开发和集成人工智能工具奠定了基础。这些技术的成功实施需要人工智能研究人员、临床医生和其他有关方之间的持续合作,从而确保人工智能工具满足临床实践的特定需求和工作流。
本文附录部分包含了一个放射学报告的例子,以及用于概念设计的几个交互式原型流程图。
总之,该文为医疗保健领域,尤其是放射学中的多模态人工智能应用提供了深入的洞见,并为未来的研究和实践指明了方向。
该项研究由来自卡内基梅隆大学、微软健康未来和剑桥大学的多位研究人员共同完成。
AI时代的职场新潮流
听说AI要来抢工作了?别担心,新岗位可比旧岗位有趣多了!想象一下,你从搬砖工升级成了机器人操作员,从算盘小能手变成了大数据分析师,这不是美滋滋吗?所以,社会生产效率提升了,我们也能更轻松地工作。不过,想成为AI界的佼佼者?那就得赶紧学起来,不然就会被同行们甩得连AI的尾巴都摸不着了!
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
