在医疗领域: AI大模型被广泛应用于疾病诊断、药物研发和医学影像分析等方面。例如,基于深度学习的AI模型能够通过分析患者的医学影像,辅助医生进行病灶定位和疾病诊断。此外,AI大模型还可以根据大量的病例数据,预测疾病的发病率和流行趋势,为疾病防控提供有力支持。
在金融领域: AI大模型被广泛应用于风险控制、投资决策和智能客服等方面。基于深度学习的AI模型能够通过分析大量的金融数据,预测市场的走势和投资风险,为投资者提供决策参考。此外,AI大模型还可以通过语音识别和自然语言处理技术,实现智能客服和自动化回访,提高金融服务效率和质量。
在工业领域: AI大模型被广泛应用于智能制造、工业设计和智能运维等方面。例如,基于深度学习的AI模型能够通过分析工业设备的运行数据,预测设备的故障和维护需求,实现设备的智能运维和预防性维护。此外,AI大模型还可以通过模拟和优化设计,辅助工业设计师进行产品设计和创新。
在教育领域: AI大模型被广泛应用于个性化教学、智能辅导和智能评估等方面。基于深度学习的AI模型能够通过分析学生的学习情况和问题,提供个性化的学习方案和辅导,提高学生的学习效果和兴趣。此外,AI大模型还可以通过自然语言处理技术,实现智能题解和答疑,为学生提供及时的学习帮助。
在智慧城市领域: AI大模型被广泛应用于智能交通、智能家居和智慧医疗等方面。基于深度学习的AI模型能够通过分析交通流量和历史数据,预测交通拥堵和事故风险,为交通管理部门提供决策支持。此外,AI大模型还可以通过智能家居系统,实现家庭设备的远程控制和智能调度,提高家居生活的便利性和舒适度。
总之,AI大模型的应用场景非常广泛,涵盖了医疗、金融、工业、教育和智慧城市等领域。随着技术的不断创新和应用数据的不断积累,AI大模型将在未来发挥更加重要的作用,推动各行业的智能化升级和发展。
当前以 ChatGPT 为代表的AI大模型在全球火爆出圈,其在生成式 AI 所具备的核心能力包括:
文本生成: 根据输入的前面几个单词或句子,自动生成一篇文章或回答问题
语音合成: 具备文本转语音的能力,可以根据输入的文本生成自然流畅的语音
语义理解: 可以准确理解输入文本的意思,从中提取关键信息并进行推理
知识图谱构建: 可以根据输入文本构建知识图谱,形成知识聚合,为后续的应用提供基础
对话管理: 可以通过学习历史对话模式,进行语句理解,生成回答并进行对话管理
语言翻译: 可以根据输入的文本,实现翻译成不同语种的文本
语言校对: 可以帮助用户纠正或改进输入文本的语法或语义错误
目前,越来越多的企业开始接入 AI 大模型,其应用场景涉及到办公软件、搜索引擎、教育、电商等众多垂直行业领域:
需要强调的是,企业在引入 AI 大模型时需要注意以下几个方面:
合理评估模型的适用性: 在引入大模型前,需要评估模型是否适用于企业自身的业务场景,并了解模型的局限性和可靠性
数据隐私和安全问题: 企业在使用 AI 大模型时需要注意数据隐私和安全问题,尤其是涉及用户个人信息时,需要严格遵守相关法规和行业标准,确保数据的安全
引入成本和维护成本: 由于 AI 大模型在数据存储和计算资源方面的需求较高,企业在引入时需要评估其引入成本和维护成本,并确保其能够在长期内稳定运行
与现有系统的集成和升级: 企业在引入 AI 大模型时需要考虑与现有系统的集成和升级问题,确保其能够与现有系统兼容,并不会对现有系统造成不良影响
最后为大家奉上时下被广泛实践的 ChatGPT 变现路径:付费订阅制成主流。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
