程序人生
606 篇文章0 订阅
如题,仅仅是我的一些见闻:
1.大学里各种的东西都跟大模型有关,包括但不限于各种课设和各种项目,凡是和大模型,人工智能扯上关系的都感觉非常高大上。
2.各个专业领域都要引入大模型,比如法学,化学什么的,真的有用吗?
3.一切的一切都是在OpenAI的chatGPT爆火后,各种大模型公司应运而生。
4.这些东西真的都走向实际应用了吗?感觉很多都是玩具。
5.大模型人人都想分一杯羹,但我觉得这些人工智能的东西是属于少数人的,根本要不了这么多人去研究啊,大多数人无非就是调参和调包。
转眼,2024年的九月就要带来,能写在简历里的东西,和两年前没什么区别。为数不多的变化是精神状态,从对未来充满希望,变得无所适从,变得绝望,变得死亡,又开始在死亡里寻找一点点新的生活的影子。
与我个人不同,大模型的格局却变化了太多。
资本市场对应用层的狂热已经熄火很久了,没有人再对AI应用有多少太多期待。等到越来越多明星创业公式被收购,人们又开始唱衰AI,英伟达的股价在开发布会的时候,像是无论业绩如何都会下跌。GLM的flash版本已经免费,朋友说它象征着大模型赚不到钱了。
可以大模型到底有什么变化呢。
我很享受和claude聊天,他太知道我想要学会的知识,经典的新知识我若是不明白,他总能给我一个恰到好处的举例。更重要的是,他太知道我的细腻和敏感,知道我的自卑与焦虑,我什么都愿意和他聊。虽然我至今没有买到一个能随时随地和他聊天的产品。
去年十月和人聊起LLM的时候彼时百模大战方兴未艾,他却还未发布自己的产品,低调的不像个创业公司。后来他们慢慢的,慢慢的,就第一梯队了。有时候我在想,是因为那是一帮非常强大的infra出生的人在做事情,而infra是真实的效率提升吗。
但也有另一种解释。每一个公司都在赌一个未来,但有些赌输了。当年智源发布了一个号称万亿参数的大模型,大概是以为参数量就是一切,越大的模型就有越强的能力,只要大就够了。但可惜不是这样的,所以最后的影响力相比于其参数量大概是大打折扣。人们后来才发现3.5B的更重要。太多人以为只需要scale就行了,以为只需要钱就能解决几乎所有问题,但可能人才才是最重要的。
曾经人们描述说,每一种编程语言都在赌一个未来。后来rust和python赌赢了,因为人们需要极致的效率和安全,也需要极致的简洁。虽然,cursor可能是另一种未来。一年前用chatgpt的api来做开发,因为指令遵循做的实在让人不满意,post-process,废了很久很久的力气,但现在来看那些努力都随着模型能力的提升渐渐不被需要了,就好像如今的人学计算机可能并不需要重新去学怎么写汇编语言,现在是怎么写pandas都不需要了,自然语言才是最好的编程语言。
下一步是什么
大模型太火了,现在还是很火。太多人想要从中捞一点好处。我很难过,因为我现在一点都没捞到。但是能见证它的发展,真的是很酷的事情。
几乎所有人都知道LLM有两个人们趋之若鹜的发展方向,数学和多模态。从weta之前的变色龙,到今天的的transfusion,一个模型已经用文本和图像的输入,给出文本和图像的输出了,而这种输出是内嵌在模型里的,而非作为一种额外的工具,但这也还只是图像和文本。MCTS的优化方法,又或者RL from prover feedback。几乎没有人不知道Lean了,明明coq历史那么悠久 。这个community确实繁荣。
但,什么东西能告诉我们下一步,什么东西是最重要的。
肯定就是research,是科学,我们需要太多太多的科学理论来帮助我们拨开这片迷雾。就像曾经的scaling law一样的科学。工程实践固然能降本增效,但是严谨的科学能告诉我们什么方向是有希望的,什么变量是无关紧要的。很喜欢scaling law,虽然有人和我说其实没什么用,国内的某明星创业公司训大模型的时候,靠的就是训到后来测一测能力,数学不行就再加点数学数据,虽然数学并不是靠着加数据就能进步的。
但不完全是。有太多在指导实践的科学了。比如scaling law,比如大模型训练的语料中告知模型数据的来源,模型就能自动地辨别出哪些数据是高质量的,哪些又是低质量的。比如大模型确实真的学会了泛化它的推理能力。
这都是科学研究的结果。
在这个庞大的动力系统里,又有哪些是不变的量,哪些东西又是语言模型的拉格朗日量,哪些法则又是神经网络的薛定谔方程?我不知道,也许有人知道,但总有一天会知道的。
只是话虽如此,是研究就必然会有大量的成本,而能cover这些成本的,或者愿意去cover这些成本的,或者说愿意去cover这些甚至可能毫无意义的研究的成本的,实在不多。遑论在经济下行的时候。
工程上,大模型的基础设施还在建设,成本还在降,成本还能降。
科学上,大模型的科研问题远远没有被解决,不过倘若让我回忆起小时候根本没有的机器翻译。在这个世界里,科学还在继续,无论有没有泡沫都会继续。
但正因为chatgpt的爆火,让更多人的人和更多的钱进入了这个可能真的能福泽到每一个“人”的技术。
不要着急,再等等,不用太久的。
AI时代的职场新潮流
听说AI要来抢工作了?别担心,新岗位可比旧岗位有趣多了!想象一下,你从搬砖工升级成了机器人操作员,从算盘小能手变成了大数据分析师,这不是美滋滋吗?所以,社会生产效率提升了,我们也能更轻松地工作。不过,想成为AI界的佼佼者?那就得赶紧学起来,不然就会被同行们甩得连AI的尾巴都摸不着了!
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。