LLM预训练与SFT数据配比调研

背景与目标
最终目标是在 LLAMA3 模型的基础上进行继续训练与 SFT,但 LLAMA3 的数据与配比方案并未公开,因此期望从其他方案中获得配比的思路,从而确保预训练与 SFT 不会严重影响原本的模型效果。

当前一种潜在的不伤害原模型的方法是,直接继续训练/SFT,随后通过 参数合并Merge 来保留原始效果。

首先需要调研现有的方案,思路为:

公开的预训练数据配比

公开的 SFT 配比方案

探测 LLAMA3 配比的潜在方法

更新日期:2024.07.29

前文:天晴:论文解读:如何自动选择 SFT 数据

后文:天晴:多模态数据混比工作调研

LLAMA 和 Qwen 技术报告
最新的Qwen2和LLAMA3.1终于是公布了很多数据细节,当然也包括数据配比问题。

Qwen2
预训练数据增强
Qwen2 的预训练数据分为 启发式方法过滤 和 Qwen 模型过滤。虽然实现细节未阐明,但根据其他工作,启发式方法可能类似 C4 数据的过滤方法。Qwen 模型过滤则可能是由 GPT 对模型进行 1-5 的质量分数打标,随后对 Qwen 的一个小版本(如 0.5B)进行微调,使其只输出 1-5 的分数 token。

数据扩充
Qwen2 包含了代码、数学、多模态数据,也包括多语数据。最关心的 数据分布 依然是含糊的,目标是让数据分布与人类相似的学习一致。通过实验,对不同来源和领域划分方法进行混合。

数据规模
Qwen1.5 使用了 3T 数据,而 Qwen2 扩充至 7T 数据。团队还尝试继续放宽数据质量筛选阈值,扩充到 12T 数据。然而,在打榜精度上,7T 和 12T 的训练并无显著差异。

长上下文训练
Qwen2 的长上下文训练分为几个阶段:

4k 上下文训练

32k 上下文训练

使用 RoPE 位置编码,将频率从 1 万增加到 100 万(频率越高,能容纳的上下文越长)

此外,Qwen2 还使用了 YARN 和 Dual Chunk Attention 机制,支持 131k 上下文(实践上,是对长上下文进行Chunk切分,随后在chunk内与chunk间进行相对位置信息的捕捉)。

后训练
核心是使用了大量非人工合成数据,值得关注的趋势是:

人机协作数据打标:使用 InsTag 模型生成标签,人工改进表述。依据标签多样性、语义性、复杂度、意图完整性评估筛选出具有代表性的数据;借助一些LLM数据演进生成的工作,例如Self-Evolution,进行数据合成;最后也包括人工标注。

自动数据合成:例如,使用 Rejection Sampling 进行数学任务推导,或者通过 Execution Feedback 对代码任务进行执行筛选。随后是SFT常见的Data Repurposing,为各种任务,借助LLM基于某些源数据,来构造任务数据。对于Qwen它还做了安全审查,当然这里我可能并不需要。

LLAMA3.1
数据清洗与质量过滤
LLAMA3.1 对数据进行了清洗和过滤,包括:

排除不安全的网站 URL

HTML 数据抽取(发现在预训练数据里包含markdown是有害的)

去重(URL、MinHash for Docs、ccNet for Lines会删除导航栏cookie警告以及一些高质量数据)

启发式过滤(n-gram 去重、脏词过滤、KL 散度过滤等)

数据质量过滤:fasttext判断docs与Wikipedia的相关,distilRoberta分类器由LLAMA2打质量标签训练去预测质量分数。distilRoberta分类器还被训练去判断代码和数学推理的数据。

相较于前代版本,有了更多的多模态数据,唯独中文的不多。

数据配比
基于知识分类和Scaling Law实验来测试配比的合理性。

知识分类:分类器划分预训练数据为领域知识数据,例如按着 艺术、娱乐…分类

Scaling Law实验确定数据配比:基于同一个数据配比,训练若干个不同的小模型(从40M到16B),观察其scaling曲线。(我猜是人工设置的配比候选),最终结构:50%通用、25%数学以及推理、17%代码、8%多语。最终通用是什么样子也不清楚左图为浮点计算量与Loss的scaling law曲线,右图是loss与accuracy之间的曲线。有趣的一点是,loss与acc的关系,不是一个线性的

长上下文数据与退火训练
长上下文数据:基于两个标准来判断是否应该增加一个上下文长度:1) 在短上下文下性能恢复 2) 已经可以完美解决某长度下的 大海捞针。所以现在的长上下文,基本是照着大海捞针任务设计的,对于真正其他的长上下文需求,考虑的并不充分。

退火数据:基于高质量代码和 数学数据在预训练尾部做退火(可以提升GSM8k 24%,Math 6.4%)。

一个重要的发现是,退火训练可以评判小规模领域数据的价值。70%数据由原始配比方案获得,30%由需要测试的目标数据获得,在40B Tokens的退火训练中,将一个训练到50%的8B模型,学习率从开始降低至0,随后进行测评或者观察Loss。基于退火法测试小数据集比基于Scaling law实验更有效。

SFT 数据配比
LLAMA 和 Qwen 的 SFT 数据处理技术非常相似,包括:

Rejection Sampling:对于一个问题使用最新 checkpoints 生成多个输出,保留最终答案可行的输出。

数据清洗:避免过度使用表情、感叹、Sorry、道歉,这个很有启发,现在的LLM一般跟他意见不符,都是直接道歉

话题分类:(微调LLAMA 8B来作话题分类器,分桶这些数据到比较粗粒度和细粒度的簇,例如粗粒度的数学推理和细粒度的三角几何)

质量打分:同时使用Reward模型(将分数分布在上四分位的数据视为高质量)和LLAMA模型信号来得到质量分数(通用数据有三个维度,精准度,指令遵循,语调与表达;代码数据两个维度,代码Bug识别和用户意图),这两个模型有很大分歧,以or关系结合二者可以达到很高的召回率。

难度打分:基本想法是优先处理对模型而言更复杂的数据,使用InsTag(Qwen也用到了)对数据打意图标签,意图越多复杂性越高,以及LLAMA的评分(与质量打分一致的方法)

语义去重:Roberta Embedding聚类,每个簇内的数据以质量和难度的乘积进行排序,保留阈值以上的。

合成数据:2.7M SFT是合成的

代码合成数据:1M规模,如果直接用LLAMA3 405B生成的数据是没有帮助的,通过Execution Feedback(也就是执行一遍,并得到执行结果,将这个错误和反馈结合进行训练,使得模型可以汲取教训)。具体为编程问题描述生成–>问题解决(让LLAMA3跑一遍,生成带有解释的解决方案最好)–>正确性分析(如果是错误的解决方案会伤害SFT,所以需要鉴别是否代码是正确的,包括 用编译器和代码分析工具Linter来作语法检查,以及通过LLM生成单元测试情况)–>错误反馈和迭代自我矫正(当前面出错后,把原始问题、错误的解法、反馈 告诉LLM来进行修复,当单元测试出错时,模型可以选择修复解决方法或者是单元测试,约20%是通过反馈矫正来变为正确的)–>迭代式微调(微调、生成数据、再微调,螺旋提升)

编程语言翻译的数据合成:Python C++和其他PHP Type Script等语言进行翻译,只要通过单元测试和语法检测的翻译保留。

反向翻译的数据合成:考虑到执行反馈的信息量对于评价质量来说是不够的,因此基于代码进行对话生成,补充代码解释、生成、文档、Debug数据。随后用这些数据让LLM进行代码生成,用原始代码作为基准,让LLM进行生成代码质量的评估。

长上下文数据合成:QA:将预训练里面的超长文档切分成8k的块,生成QA pair。Summarization:对8k的上下文进行总结后,再对总结进行总结,得到QA数据。Long Context Code Reasoning:找到python最常import引用的代码函数,删除其中的一个关键文件,提示模型去识别哪些文件依赖于这个丢失的文件,并生成丢失文件的代码。如果SFT模型在长语境表现良好,DPO只使用短文本,不会伤害模型的长上下文能力。

工具使用数据合成:包括搜索引擎(Brave Search)、Python解释器、数学计算引擎(Wolfram Alpha API)

前代版本:LLAMA2共使用2T数据语言分布:LLAMA3使用了15T数据,并未给出更详细的信息

只有LLAMA1介绍了数据配比:但SFT方案没有给出

现有公开的模型方案

小模型 - MiniCPM
预训练数据配比:预训练退火阶段SFT数据配比:SFT阶段:
使用了和退火阶段类似的SFT数据(不同的是将预训练数据、高质量的无标注数据例如wiki去除,只留高质量有标标注数据,即sft数据)

小模型 - Microsoft/Phi-3-mini-4k-instruct
未给出更多详细的数据信息。

大模型 - PALM2
除了部分中文的语言配比外,更多的数据信息未公开。

PALM1 版本
PALM1 版本给出了具体的代码和语言配比。PALM1具体的代码配比PALM1语言配比

缺少具体的Finetune方案,只介绍了PALM-Code版本用了60%-python(ExtraPythonData)和30%多代码语言(预训练中相同的源)与10%自然语言,共计7.75B

大模型 - Qwen
Qwen1 只透露了数据源,未给出具体的配比。Qwen2 也未公开数据配比。

大模型 - Baichuan
Baichuan2 的数据配比按领域划分,但未公开 SFT 配比信息。成熟的工作在后期对数据配比的讨论越来越少,逐渐变成了商业机密。

探索性工作
现在一般折腾做SFT模型的工作,都是找一堆看着质量还可以的数据源,随后一股脑全扔进去,也不考虑配比啥的

Chinese-LLAMA
Chinese-LLAMA 在 LLAMA 的基础上进行了中文微调,包含以下数据源:
0_english_LongQLoRA-SFT-39k.jsonl:506.50MB

0_english_Open-Platypus_25k.jsonl:31.91MB

1_0_firefly_chinese_common_task_1649k.jsonl:1.18GB

1_chengyu_0.1k.jsonl:56.06KB

1_coig_human_value_multi_choice_0.1k.jsonl:69.24KB

1_coig_pc_core_sample_3k.jsonl:3.94MB

1_poem_0.05k.jsonl:18.69KB

1_trad-multi-choice_0.1k.jsonl:35.81KB

1_translate_classical_chinese_0.7k.jsonl:473.36KB

1_xhs_1.5k.jsonl:2.44MB

1_zhihu_expansion_0.17k.jsonl:408.97KB

1_zhihu_score9_2.5k.jsonl:6.66MB

2_sharegpt_common_zh_76k.jsonl:482.59MB

2_sharegpt_computer_zh_20k.jsonl:81.02MB

2_sharegpt_continue_zh_1.9k.jsonl:18.88MB

3_logi-qa_0.4k.jsonl:482.07KB

3_ruozhiba_ruozhiba2_0.22k.jsonl:205.56KB

sft_zh_with_all.jsonl:1.98GB

链接:https://modelscope.cn/datasets/baicai003/Llama3-Chinese-dataset/files

Rhea-72b-v0.5 (Huggingface Leaderboard SFT 榜单第一)
SFT 数据
Rhea 的 SFT 数据包含 datasets_enconv_4m,分为两部分。注意,如果在 Huggingface 上找不到相关数据集,可能是私有数据。
基座模型使用 bacusai/Smaug-72B-v0.1

链接:(https://huggingface.co/davidkim205/Rhea-72b-v0.5

数据来源
stack-exchange-preferences

SlimOrca

alpaca-gpt4

SHP

HC3

databricks-dolly-15k

orca-dpo-pairs

us-stockname

OpenHermes2.5-dpo-binarized-alpha

distilabel-math-preference-dpo

Neural-DPO

truthy-dpo-v0.1

distilabel-capybara-dpo-7k-binarized

us-sentiment

contextual-dpo-v0.1

随机挑选的 SFT 数据集:
bigbench

glue_mnli

glue_qqp

xnli

codexglue_code2text_go

trivia_qa

medmcqa

hendrycks_ethics

super_glue_record

glue_qnli

anli_r3

swag

squad_v2

nq_open

drop

glue_sst2

blimp

paws-x

unscramble

anli_r2

babi

math_qa

social_i_qa

piqa

arithmetic

anli_r1

prost

sciq

mc_taco

medqa

super_glue_boolq

hendrycks_math

lambada

toxigen-data

glue_cola

pubmed_qa

logiqa

mutual

headqa

bbh

super_glue_wic

openbookqa

glue_mrpc

web_questions

qasper

super_glue_multirc

story_cloze

super_glue_rte

glue_rte

race

xwinograd

asdiv

xstory_cloze

crows_pairs_multilingual

belebele

glue_wnli

super_glue_wsc

coqa

super_glue_copa

super_glue_cb

winograd_wsc

mgsm

scrolls_contract_nli

abacusai/Smaug-72B-v0.1 (Huggingface SFT 榜单第 3 名)
基于 Qwen-72B 和 moreh/MoMo-72B-lora-1.8.7-DPO 进行的微调。
链接:https://huggingface.co/abacusai/Smaug-72B-v0.1

核心在于 DPO 新方法,SFT 数据未过多提及。

ibivibiv/alpaca-dragon-72b-v1 与 ibivibiv/strix-rufipes-70b (Huggingface SFT 榜单第 4 名)
未公开 SFT 数据。

saltlux/luxia-21.4b-alignment-v1.2 (Huggingface SFT 榜单第 5 名)
SFT 数据可以在 Huggingface 上找到,具体为:

alpaca-gpt4-data 52k

Open-Orca/SlimOrca 518k

in-house generated data utilizing Metamath 395k

fblgit/UNA-ThePitbull-21.4B-v2
代码微调模型,SFT 数据使用了 Replete-AI/code_bagel_hermes-2.5,共 2.83M。

Ziya
国产 SFT 模型,未开源 SFT 数据。

链家 BELLE
中文 SFT 模型,参考 Stanford Alpaca 生成的 1M+0.5M 中文数据,中文之光,相较于 Ziya 不开源要好得多。

具体为:

https://github.com/LianjiaTech/BELLE/blob/main/data/1.5M/zh_seed_tasks.json BelleGroup/train_0.5M_CN 519k
BelleGroup/train_1M_CN 917k

10M 版本的还并未完善。

链接:

https://github.com/LianjiaTech/BELLE

链家收集的其他 SFT 数据源:

中文:
https://github.com/LianjiaTech/BELLE/blob/main/data/awesome_open_instruct_data_for_chinese.md

具体为:

(JosephusCheung/GuanacoDataset) | 534K

(COIG) | 191K

(Firefly) | 1.1M

(HC3-Chinese) | 13K

(alpaca_gpt4_zh) | 52K

(pCLUE) | 1.2M

(CSL) | 396K

(MOSS) | 0.6M

(Safety-Prompts) | 100K

(oa_leet10k) | 10K

(RefGPT-Fact-zh) | 50K

英文:
https://github.com/LianjiaTech/BELLE/blob/main/data/awesome_open_instruct_data_for_english.md

具体为:

(InstructWild) | 52K

(HC3) | 24K

(prosocial-dialog) | 58K

(ChatAlpaca) | 20K

(gpt4all) | 437K

(gpt4all-j) | 800K

(Anthropic/hh-rlhf) | 170K

(LaMini-instruction) | 2.58M

(oa_leet10k) | 10K

(dolly-v2) | 15K

(sharegpt) | 90K

(stanford_alpaca) | 52K

(UltraChat) | 1.57M

(RefGPT-Fact) | 50K

(OIG-small-chip2) | 44M

(OpenAssistant/oasst1) | 88K

Firefly
链接:https://github.com/yangjianxin1/Firefly
Firefly 是中文综合数据开源模型,很多数据是交叉引用其他模型数据。SFT 数据部分为:

YeungNLP/firefly-train-1.1M:115万条数据,包含23种中文NLP任务数据。

YeungNLP/moss-003-sft-data:671k条中英文多轮对话数据。

YeungNLP/ultrachat:772k条英文多轮对话数据。

WizardLM_evol_instruct_V2_143k:通过Evol-Instruct方法生成的英文指令数据,包含143k条。

YeungNLP/school_math_0.25M:25万条数学运算指令数据。

shareAI/CodeChat:包含逻辑推理、代码问答等相关语料。

shareAI/ShareGPT-Chinese-English-90k:中英文平行双语数据集,包含复杂场景下的用户提问。

Dolly
Dolly 是一个开源指令跟踪记录数据集,由 Databricks 员工生成,涉及多种任务行为。具体数据:
databricks/databricks-dolly-15k:15k 条数据。
其他榜单上的模型大多没有开源 SFT 数据来源。

开源开放的 LLM
研究社区已经形成了一些真正开放的 LLMs,例如 Pythia、Amber、OLMo、Map-Neo。

Map-Neo
Map-Neo 通过不同的数据源进行了划分。最终语料库的构成如下:

52.55% 来自 Common Crawl

22.29% 来自编程代码

其余来自学术论文、书籍和其他印刷材料。

继续训练的数据配比为:Map-Neo 还提供了从头爬取数据的配比这里仍然没有对数据配比进行系统性的调研,解释清楚为什么RedPajama要占92.38%。一些数据过滤、去重的Pipeline与Qwen和LLAMA也非常相似,就不展开叙述了。下图为各个处理组件过滤后,剩余的数据量。(我总觉着按着数据源划分有些没道理,因为从Common Crawl和Wiki各拿出100条数据,有时他们之间是没有明确可区分边界的。我认为可以首先利用InsTag、LLAMA分类器、聚类、质量分类这样的工作给数据进行有边界的划分,随后再进行配比的研究才是有意义的。)

Pythia
Pythia 是 EleutherAI 的工作,探究了 16 个 LLM 模型(70M 到 12B)在相同数据训练下的表现。训练数据是 Pile,未探究数据相关的工作。
链接:https://github.com/EleutherAI

FineWeb 是另一个高度消融的工作,探索了数据选择对模型表现的影响。

研究性工作:DoReMi
Google DeepMind的工作,先不使用任何下游任务知识的情况下,训练一个小的代理模型(280M),得到数据配比。随后利用该数据配比,训练真正的大模型(8B)。

评估指标是在Pile/GLaM数据的困惑度,以及下游任务精度。

动机介绍
Pile数据集包含24%的网络数据,9%维基百科,4%Github等。(这个百分比,是按照Tokens数统计划分的)目前还不清楚每个领域是如何影响LM的预训练效果以及下游任务表现。

Pile是人工选择的配比,PaLM和GLaM(2021年的工作)是依赖下游任务来选择数据配比的。

DoReMi的目标是寻找一个数据配比,在不知道下游任务的情况下,在所有下游上表现都很好。提出excess loss超额损失的概念,代表 参考模型(以平均混比方式训练)和 混比模型(以特定混比数据训练)的loss差额。优化目标为最小化 在所有domain中最坏情况下的exceess loss。(这里的domain代表各个数据源)(这里的最坏情况,worst-case loss over domain,代表在各个domain上,与均值配比模型的NLL负对数似然loss比起来,哪个domain中新配比下的模型会有更高的loss)

使用基于在线学习的方式进行训练,在每个domain上的动态更新数据混比。根据每个domain部分的loss情况,来选择重新调整数据配比,使其优化超额损失。对超额损失大的domain的一个Batch,计算各个数据项的超额损失求和\lambda,e^(n\lambda)*原domain配比作为新domain配比。随后更新基线模型和代理模型权重。(直觉来理解一下超额损失, 平均混比模型,可以一定程度上代表一个基线,意味着只要增加某个domain的数据,大概率可以达到这个基线,如果配比模型在某个domain表现差了,可能意味着这一部分的数据缺少了。这个假前提假设是越多的数据,在本domain表现越好。有一个问题是,为什么要更新基线模型,而不是直接训练好之后去用?怕直接用过强的模型没法做到监督作用吗?)

AI时代的职场新潮流

听说AI要来抢工作了?别担心,新岗位可比旧岗位有趣多了!想象一下,你从搬砖工升级成了机器人操作员,从算盘小能手变成了大数据分析师,这不是美滋滋吗?所以,社会生产效率提升了,我们也能更轻松地工作。不过,想成为AI界的佼佼者?那就得赶紧学起来,不然就会被同行们甩得连AI的尾巴都摸不着了!

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值