质能方程推导过程


质能方程是一个重要且著名的方程,没有质能方程,就不会有今天核物理的迅速发展。在高中,质能方程是直接给出来的,没有任何推导。那么,质能方程是怎么推导得出的呢?

读懂质能方程的含义

我们知道,质能方程就是下面这个等式:
E = m c 2 E=mc^2 E=mc2
其中m表示物体的质量。但是,这里的“质量”和我们通常所理解的质量不同。

质能方程是在相对论的基础上提出的。我们知道,在牛顿力学中,时间和空间是绝对的。这种“绝对”观念只在宏观条件下物体相对于参考系低速运动(速度远小于光速)时适用。如果在微观世界中,或者物体相对于惯性系做高速运动的情况下,经典力学就不适用了。这就是爱因斯坦提出相对论的原因。

在惯性系中,物体静止时具有的质量叫做静止质量,这时物体没有能量。但当物体做高速运动时,物体的能量和质量会以成正比的方式一起增加。这个新增加的质量与物体静止质量之和就是质能方程中物体的质量m。而新增加的能量也就是E。这就是说, E ∝ m E∝m Em

下面,我们开始对质能方程的推导。推导过程有参考其他出处。

问题呈现

在一惯性参考系中,一微观粒子的静止质量为 m 0 m_0 m0,现使该粒子受力 F 的作用(力是关于时间的函数),由静止开始运动。过一段时间 t 后粒子的位移是 x 0 x_0 x0 ,质量是 m + m 0 m+m_0 m+m0 ,这一过程中物体增加的能量为 E 。已知光速大小为 c 。

求证: E = m c 2 E=mc^2 E=mc2

方程证明

物体增加的能量即为物体增加的动能,由动能定理可得 ∫ 0 x 0 F d x = E \int_0^{x_0}F{\text d}x=E 0x0Fdx=E

将上式改造成微分表达式,即有
d E = F d x … … ① {\text d}E=F{\text d}x ……① dE=Fdx……
由动量定理可得 d p = F d t … … ② {\text d}p=F{\text d}t ……② dp=Fdt……

① ② \frac{①}{②} ,由 d x d t = v \frac{{\text d}x}{{\text d}t}=v dtdx=v
d E d p = v \frac{{\text d}E}{{\text d}p}=v dpdE=v

d E = v d p d E = v d ( m v ) {\text d}E=v{\text d}p\\ {\text d}E=v{\text d}(mv) dE=vdpdE=vd(mv)
亦即
d E = m v d v + v 2 d m … … ③ {\text d}E=mv{\text d}v+v^2{\text d}m ……③ dE=mvdv+v2dm……
③式先留着,下面先推另外一个式子。

根据狭义相对论的质速关系,我们得到
m = m 0 1 − v 2 c 2 m=\frac{m_0}{\sqrt{1-{\frac{v^2}{c^2}}}} m=1c2v2 m0
去根号,得 m 2 = m 0 2 1 − v 2 c 2 = m 0 2 c 2 c 2 − v 2 m^2=\frac{m_0^2}{1-{\frac{v^2}{c^2}}}=\frac{m_0^2c^2}{c^2-v^2} m2=1c2v2m02=c2v2m02c2

m 2 c 2 − m 2 v 2 = m 0 2 c 2 m^2c^2-m^2v^2=m_0^2c^2 m2c2m2v2=m02c2

两边对v求导:
d ( m 2 c 2 − m 2 v 2 ) d v = d ( m 0 2 c 2 ) d v \frac{{\text d}(m^2c^2-m^2v^2)}{{\text d}v}=\frac{{\text d}(m_0^2c^2)}{{\text d}v} dvd(m2c2m2v2)=dvd(m02c2)
由于 m 0 , c m_0,c m0c 均为常数,所以等号右边为0,即
d ( m 2 c 2 − m 2 v 2 ) d v = 0 2 m c 2 d m − d ( m 2 v 2 ) d v = 0   2 m c 2 d m − 2 m v 2 d m − 2 v m 2 d v d v = 0 \frac{{\text d}(m^2c^2-m^2v^2)}{{\text d}v}=0 \frac{2mc^2{\text dm-{\text d}(m^2v^2)}}{{\text d}v}=0\\\ \frac{2mc^2{\text d}m-2mv^2{\text d}m-2vm^2{\text d}v}{ \text dv}=0 dvd(m2c2m2v2)=0dv2mc2dmd(m2v2)=0 dv2mc2dm2mv2dm2vm2dv=0
− 2 v m 2 + 2 m c 2 d m − 2 m v 2 d m d v = 0 -2vm^2+\frac{2mc^2{\text dm}-2mv^2{\text dm}}{\text dv}=0 2vm2+dv2mc2dm2mv2dm=0
− 2 v m 2 d v + 2 m c 2 d m − 2 m v 2 d m = 0   − v m d v + c 2 d m − v 2 d m = 0 -2vm^2{\text dv}+2mc^2{\text dm}-2mv^2{\text dm}=0 \\\ -vm{\text dv}+c^2{\text dm}-v^2{\text dm}=0 2vm2dv+2mc2dm2mv2dm=0 vmdv+c2dmv2dm=0
− v m d v + c 2 d m = v 2 d m -vm{\text dv}+c^2{\text dm}=v^2{\text dm} vmdv+c2dm=v2dm
将这个结果代入③式,得到
d E = m v d v − v m d v + c 2 d m = c 2 d m dE=mv{\text dv}-vm{\text dv}+c^2{\text dm}=c^2{\text dm} dE=mvdvvmdv+c2dm=c2dm
这时,我们进行积分,得到 E = ∫ m 0 m + m 0 c 2 d m = m c 2 ∣ m 0 m + m 0 = m c 2 E=\int_{m_0}^{m+m_0}c^2dm\\ =mc^2|_{m_0}^{m+m_0}=mc^2 E=m0m+m0c2dm=mc2m0m+m0=mc2

可以看到,粒子由于运动产生的能量 E = m c 2 E=mc^2 E=mc2

命题得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code Writers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值