质能方程是一个重要且著名的方程,没有质能方程,就不会有今天核物理的迅速发展。在高中,质能方程是直接给出来的,没有任何推导。那么,质能方程是怎么推导得出的呢?
读懂质能方程的含义
我们知道,质能方程就是下面这个等式:
E
=
m
c
2
E=mc^2
E=mc2
其中m表示物体的质量。但是,这里的“质量”和我们通常所理解的质量不同。
质能方程是在相对论的基础上提出的。我们知道,在牛顿力学中,时间和空间是绝对的。这种“绝对”观念只在宏观条件下物体相对于参考系低速运动(速度远小于光速)时适用。如果在微观世界中,或者物体相对于惯性系做高速运动的情况下,经典力学就不适用了。这就是爱因斯坦提出相对论的原因。
在惯性系中,物体静止时具有的质量叫做静止质量,这时物体没有能量。但当物体做高速运动时,物体的能量和质量会以成正比的方式一起增加。这个新增加的质量与物体静止质量之和就是质能方程中物体的质量m。而新增加的能量也就是E。这就是说, E ∝ m E∝m E∝m 。
下面,我们开始对质能方程的推导。推导过程有参考其他出处。
问题呈现
在一惯性参考系中,一微观粒子的静止质量为 m 0 m_0 m0,现使该粒子受力 F 的作用(力是关于时间的函数),由静止开始运动。过一段时间 t 后粒子的位移是 x 0 x_0 x0 ,质量是 m + m 0 m+m_0 m+m0 ,这一过程中物体增加的能量为 E 。已知光速大小为 c 。
求证: E = m c 2 E=mc^2 E=mc2
方程证明
物体增加的能量即为物体增加的动能,由动能定理可得 ∫ 0 x 0 F d x = E \int_0^{x_0}F{\text d}x=E ∫0x0Fdx=E
将上式改造成微分表达式,即有
d
E
=
F
d
x
…
…
①
{\text d}E=F{\text d}x ……①
dE=Fdx……①
由动量定理可得
d
p
=
F
d
t
…
…
②
{\text d}p=F{\text d}t ……②
dp=Fdt……②
①
②
\frac{①}{②}
②①,由
d
x
d
t
=
v
\frac{{\text d}x}{{\text d}t}=v
dtdx=v 得
d
E
d
p
=
v
\frac{{\text d}E}{{\text d}p}=v
dpdE=v
即
d
E
=
v
d
p
d
E
=
v
d
(
m
v
)
{\text d}E=v{\text d}p\\ {\text d}E=v{\text d}(mv)
dE=vdpdE=vd(mv)
亦即
d
E
=
m
v
d
v
+
v
2
d
m
…
…
③
{\text d}E=mv{\text d}v+v^2{\text d}m ……③
dE=mvdv+v2dm……③
③式先留着,下面先推另外一个式子。
根据狭义相对论的质速关系,我们得到
m
=
m
0
1
−
v
2
c
2
m=\frac{m_0}{\sqrt{1-{\frac{v^2}{c^2}}}}
m=1−c2v2m0
去根号,得
m
2
=
m
0
2
1
−
v
2
c
2
=
m
0
2
c
2
c
2
−
v
2
m^2=\frac{m_0^2}{1-{\frac{v^2}{c^2}}}=\frac{m_0^2c^2}{c^2-v^2}
m2=1−c2v2m02=c2−v2m02c2
即 m 2 c 2 − m 2 v 2 = m 0 2 c 2 m^2c^2-m^2v^2=m_0^2c^2 m2c2−m2v2=m02c2
两边对v求导:
d
(
m
2
c
2
−
m
2
v
2
)
d
v
=
d
(
m
0
2
c
2
)
d
v
\frac{{\text d}(m^2c^2-m^2v^2)}{{\text d}v}=\frac{{\text d}(m_0^2c^2)}{{\text d}v}
dvd(m2c2−m2v2)=dvd(m02c2)
由于
m
0
,
c
m_0,c
m0,c 均为常数,所以等号右边为0,即
d
(
m
2
c
2
−
m
2
v
2
)
d
v
=
0
2
m
c
2
d
m
−
d
(
m
2
v
2
)
d
v
=
0
2
m
c
2
d
m
−
2
m
v
2
d
m
−
2
v
m
2
d
v
d
v
=
0
\frac{{\text d}(m^2c^2-m^2v^2)}{{\text d}v}=0 \frac{2mc^2{\text dm-{\text d}(m^2v^2)}}{{\text d}v}=0\\\ \frac{2mc^2{\text d}m-2mv^2{\text d}m-2vm^2{\text d}v}{ \text dv}=0
dvd(m2c2−m2v2)=0dv2mc2dm−d(m2v2)=0 dv2mc2dm−2mv2dm−2vm2dv=0
−
2
v
m
2
+
2
m
c
2
d
m
−
2
m
v
2
d
m
d
v
=
0
-2vm^2+\frac{2mc^2{\text dm}-2mv^2{\text dm}}{\text dv}=0
−2vm2+dv2mc2dm−2mv2dm=0
−
2
v
m
2
d
v
+
2
m
c
2
d
m
−
2
m
v
2
d
m
=
0
−
v
m
d
v
+
c
2
d
m
−
v
2
d
m
=
0
-2vm^2{\text dv}+2mc^2{\text dm}-2mv^2{\text dm}=0 \\\ -vm{\text dv}+c^2{\text dm}-v^2{\text dm}=0
−2vm2dv+2mc2dm−2mv2dm=0 −vmdv+c2dm−v2dm=0
−
v
m
d
v
+
c
2
d
m
=
v
2
d
m
-vm{\text dv}+c^2{\text dm}=v^2{\text dm}
−vmdv+c2dm=v2dm
将这个结果代入③式,得到
d
E
=
m
v
d
v
−
v
m
d
v
+
c
2
d
m
=
c
2
d
m
dE=mv{\text dv}-vm{\text dv}+c^2{\text dm}=c^2{\text dm}
dE=mvdv−vmdv+c2dm=c2dm
这时,我们进行积分,得到
E
=
∫
m
0
m
+
m
0
c
2
d
m
=
m
c
2
∣
m
0
m
+
m
0
=
m
c
2
E=\int_{m_0}^{m+m_0}c^2dm\\ =mc^2|_{m_0}^{m+m_0}=mc^2
E=∫m0m+m0c2dm=mc2∣m0m+m0=mc2
可以看到,粒子由于运动产生的能量 E = m c 2 E=mc^2 E=mc2。
命题得证。