1.线性概率模型(Linear Probability Model,PLM)
2.Logistic回归与Logit模型
1.PLM
线性回归模型在定量分析中比较流行,但是在分析分类变量的时候,会遇到困难,比如因变量是分类变量。在现实生活中,人们也会将连续变量转化成分类变量进行分析,如将成绩这个连续因变量转化成能否考上大学的二分类变量。
在线性回归模型中,对自变量的限定性并不强,只规定了自变量不能是其他变量的完全线性组合,并且自变量不能与误差项相关。自变量可以是连续变量,也可以是分类变量。但是线性回归模型中,对因变量做了限定,规定其只能是连续变量。
用一个例子阐述在线性回归模型中因变量不能是分类变量的原因。
假设用OLS解释家庭扫地机器人的购买情况(因变量是二分类变量)。
为了方便叙述,只考虑一个自变量,回归模型如下:
其中 表示第 i 个家庭的收入,
是二分类变量,当
= 1时,表示购买,否则
= 0。假设x独立于残差项
(残差:实际观测值与估计值(拟合值)之差),残差项
是一个均值为0且独立于
的随机变量(意味着残差项之间相互独立)
在给定 的条件下,
的期望为:
由于 的取值为0或1,
的期望实际上就是