【应用回归分析】CH3 回归参数的估计3——约束最小二乘估计

本文介绍了在线性约束条件下求解最小二乘估计的方法,并通过例题展示了如何在具体问题中应用这一理论。首先通过推导给出了带约束条件的最小二乘估计公式,随后通过一个天文测量的例子进行了说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、推导

二、定理

三、例题


一、推导

        对于线性回归模型(3.1.6),在对参数向量\beta没有附加任何约束条件的情况下,在前面两节我们求出了最小二乘估计并讨论了它的基本性质。但是,在一些检验问题的讨论中或其它一些场合,我们需要求带一定线性约束的最小二乘估计。 

        假设{\color{Red} A\beta =b(3.3.1)}是一个相容线性方程组,其中Ak*p的已知矩阵,且秩为kbk*1已知向量。我们用Lagrange乘子法求模型(3.1.6)满足线性约束(3.3.1)的最小二乘估计。记

A=\begin{pmatrix} a_{1}^{'}\\ \vdots \\ a_{k}^{'} \end{pmatrix},b=\begin{pmatrix} b_{1}\\ \vdots \\ b_{k} \end{pmatrix}(3.3.2)

则线性约束(3.3.1)可以改写为a_{i}^{'}\beta=b_{i},i=1,\cdots,k(3.3.3)。我们的问题是在(3.3.3)k个条件下求\beta使Q(\beta )=\left \| y-X\beta \right \|^2达到最小。为了应用Lagrange乘子法,构造辅助函数

F(\beta ,\lambda )=\left \| y-X\beta \right \|^2+2\sum_{i=1}^{k}\lambda _{i}(a_{i}^{'}\beta -b_{i})=\left \| y-X\beta \right \|^2+2\lambda ^{'}(A\beta -b)=(y-X\beta )^{'}(y-X\beta )+2\lambda ^{'}(A\beta -b)

其中,\lambda =\begin{pmatrix} \lambda _{1}\\ \vdots \\ \lambda _{k} \end{pmatrix}Lagrange乘子。对函数F(\beta ,\lambda )求对\beta _{0},\beta _{1},\cdots,\beta _{p-1}的偏导数,整理并令它们等于零,得到-X^{'}y+X^{'}X\beta +A^{'}\lambda =0(3.3.4)。然后解联立方程组

\left\{\begin{matrix} -X^{'}y+X^{'}X\beta +A^{'}\lambda =0\\ A\beta =b \end{matrix}\right.

        我们用\hat{\beta }_{c},\hat{\lambda }_{c}表示上述联立方程组的解,用(X^{'}X)^{-1}左乘(3.3.4),整理后得到

\hat{\beta }_{c}=(X^{'}X)^{-1}X^{'}y-(X^{'}X)^{-1}A^{'}\hat{\lambda }_{c}=\hat{\beta }-(X^{'}X)^{-1}A^{'}\hat{\lambda }_{c}.(3.3.5)

带入(3.3.1)b=A\hat{\beta }_{c}=A\hat{\beta }-A(X^{'}X)^{-1}A^{'}\hat{\lambda _{c}},等价地A(X^{'}X)^{-1}A^{'}\hat{\lambda _{c}}=(A\hat{\beta}-b)(3.3.6),这是一个关于\hat{\lambda _{c}}的线性方程组。因为A的秩为k,于是A(X^{'}X)^{-1}A^{'}k*k的可逆矩阵,故(3.3.6)有唯一解

\hat{\lambda _{c}}=(A(X^{'}X)^{-1}A^{'})^{-1}(A\hat{\beta }-b)

\hat{\lambda _{c}}代入(3.3.5)得到

\hat{\beta _{c}}=\hat{\beta }-(X^{'}X)^{-1}A^{'}(A(X^{'}X)^{-1}A^{'})^{-1}(A\hat{\beta }-b).(3.3.7)

        现在我们证明\hat{\beta _{c}}确实是线性约束A\beta =b\beta的最小二乘估计,为此我们只需要证明如下两点:

  • A\hat{\beta _{c}}=b;
  • 对一切满足A\beta =b\beta,都有\left \| y-X\beta \right \|^2\geqslant \left \| y-X\hat{\beta _{c}} \right \|^2.

{\color{Blue} proof:}

{\color{Blue} (a)A\hat{\beta}=A(\hat{\beta}-(X^{'}X)^{-1}A^{'}(A(X^{'}X)^{-1}A^{'})^{-1}(A\hat{\beta }-b))=A\hat{\beta }-A(X^{'}X)^{-1}A^{'}(A(X^{'}X)^{-1}A^{'})^{-1}(A\hat{\beta }-b)=A\hat{\beta }-A\hat{\beta }+b=b}

(b)\left \| y-X\beta \right \|^2=\left \| y-X\hat{\beta} \right \|^2+(\hat{\beta }-\beta )^{'}X^{'}X(\hat{\beta }-\beta )=\left \| y-X\hat{\beta} \right \|^2+(\hat{\beta }-\hat{\beta_{c}}+\hat{\beta_{c}}-\beta )^{'}X^{'}X(\hat{\beta }-\hat{\beta_{c}}+\hat{\beta_{c}}-\beta )=\left \| y-X\hat{\beta} \right \|^2+(\hat{\beta }-\hat{\beta _{c}})^{'}X^{'}X(\hat{\beta }-\hat{\beta _{c}})+(\hat{\beta_{c} }-\hat{\beta })^{'}X^{'}X(\hat{\beta _{c}}-\hat{\beta})=\left \| y-X\hat{\beta} \right \|^2+\left \| X(\hat{\beta }-\hat{\beta _{c}}) \right \|^2+\left \| X(\hat{\beta_{c} }-\hat{\beta }) \right \|^2(3.3.8)

        这里我们利用了应用(3.3.5)得到的下述关系

(\hat{\beta }-\hat{\beta _{c}})^{'}X^{'}X(\hat{\beta_{c} }-\beta )=\hat{\lambda _{c}}^{'}A(\hat{\beta_{c} }-\beta )=\hat{\lambda _{c}}^{'}(A\hat{\beta_{c} }-A\beta )=\hat{\lambda _{c}}^{'}(b-b)=0

这个等式对一切满足A\beta =b\beta成立。

        (3.3.8)表明,对一切满足A\beta =b\beta,总有

\left \| y-X\beta \right \|^2\geqslant \left \| y-X\hat{\beta } \right \|^2+\left \| X(\hat{\beta }-\hat{\beta _{c}}) \right \|^2(3.3.9)

且等号成立当且仅当(3.3.8)式的第三项等于零,即X(\hat{\beta _{c}}-\beta )=0,因为rank(A)=p,故上式等价于\beta= \hat{\beta _{c}}。于是在(3.3.9)中用\hat{\beta _{c}}代替\beta,等式成立,即

\left \| y-X\hat{\beta_{c}} \right \|^2=\left \| y-X\hat{\beta } \right \|^2+\left \| X(\hat{\beta }-\hat{\beta _{c}}) \right \|^2(3.3.10)

结合(3.3.9)(3.3.10),得证。

        我们把\hat{\beta _{c}}称为\beta约束最小二乘估计。 

二、定理

        对于线性回归模型(3.1.6),满足(3.3.1)的约束最小二乘估计为

{\color{Red} \hat{\beta _{c}}=\hat{\beta }-(X^{'}X)^{-1}A^{'}(A(X^{'}X)^{-1}A^{'})^{-1}(A\hat{\beta }-b)}

其中,\hat{\beta }=(X^{'}X)^{-1}X^{'}y是无约束条件下的最小二乘估计。

三、例题

        在天文测量中,对天空中三个星位点构成的三角形ABC的三个内角\theta _{1},\theta _{2},\theta _{3}进行测量,得到的测量值分别为y_{1},y_{2},y_{3}。由于存在测量误差,所以需要对\theta _{1},\theta _{2},\theta _{3}进行估计,我们利用线性模型有关的量:

\left\{\begin{matrix} y_{1}=\theta _{1}+e_{1}\\ y_{2}=\theta _{2}+e_{2}\\ y_{3}=\theta _{3}+e_{3}\\ \theta _{1}+\theta _{2}+\theta _{3}=\pi \end{matrix}\right.(3.3.11)

其中e_{i},i=1,2,3表示测量误差。(3.3.11)就是一个带有约束条件的线性模型,可把它写成矩阵形式:

\begin{pmatrix} y_{1}\\ y_{2}\\ y_{3} \end{pmatrix}=\begin{pmatrix} 1 & 0& 0\\ 0 & 1&0 \\ 0 &0 & 1 \end{pmatrix}\begin{pmatrix} \theta _{1}\\ \theta _{2}\\ \theta _{3} \end{pmatrix}+\begin{pmatrix} e_{1}\\ e_{2}\\ e_{3} \end{pmatrix}\Leftrightarrow \left\{\begin{matrix} y=X\beta +e\\ A\beta =b \end{matrix}\right. 

其中,y=\begin{pmatrix} y_{1}\\ y_{2}\\ y_{3} \end{pmatrix},\beta =\begin{pmatrix} \theta _{1}\\ \theta _{2}\\ \theta _{3} \end{pmatrix},X=\begin{pmatrix} 1 &0 &0 \\ 0 &1 &0 \\ 0&0 &1 \end{pmatrix}=I_{3},A=(1,1,1),b=\pi。利用定理3.3.1经计算可得\hat{\beta _{c}}=\begin{pmatrix} y_{1}\\ y_{2}\\ y_{3} \end{pmatrix}-\frac{1}{3}(\sum_{i=1}^{3}y_{i}-\pi)\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix},即\hat{\theta _{i}}=y_{i}-\frac{1}{3}(y_{1}+y_{2}+y_{3}-\pi),i=1,2,3\theta _{i}的约束最小二乘估计。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值