目录
一、推导
对于线性回归模型,在对参数向量
没有附加任何约束条件的情况下,在前面两节我们求出了最小二乘估计并讨论了它的基本性质。但是,在一些检验问题的讨论中或其它一些场合,我们需要求带一定线性约束的最小二乘估计。
假设是一个相容线性方程组,其中
为
的已知矩阵,且秩为
。
为
已知向量。我们用
乘子法求模型
满足线性约束
的最小二乘估计。记
则线性约束可以改写为
。我们的问题是在
的
个条件下求
使
达到最小。为了应用
乘子法,构造辅助函数
其中,为
乘子。对函数
求对
的偏导数,整理并令它们等于零,得到
。然后解联立方程组
我们用表示上述联立方程组的解,用
左乘
,整理后得到
带入得
,等价地
,这是一个关于
的线性方程组。因为
的秩为
,于是
是
的可逆矩阵,故
有唯一解
将代入
得到
现在我们证明确实是线性约束
下
的最小二乘估计,为此我们只需要证明如下两点:
- 对一切满足
的
,都有
这里我们利用了应用得到的下述关系
这个等式对一切满足的
成立。
表明,对一切满足
的
,总有
且等号成立当且仅当式的第三项等于零,即
,因为
,故上式等价于
。于是在
中用
代替
,等式成立,即
结合,得证。
我们把称为
的约束最小二乘估计。
二、定理
对于线性回归模型,满足
的约束最小二乘估计为
其中,是无约束条件下的最小二乘估计。
三、例题
在天文测量中,对天空中三个星位点构成的三角形的三个内角
进行测量,得到的测量值分别为
。由于存在测量误差,所以需要对
进行估计,我们利用线性模型有关的量:
其中表示测量误差。
就是一个带有约束条件的线性模型,可把它写成矩阵形式:
其中,。利用定理3.3.1经计算可得
,即
为
的约束最小二乘估计。