卡方检验:案例实战

卡方检验是一种统计方法,用于分析分类变量间的偏差,如比较两组样本分布。通过计算卡方值和P值来判断差异是否显著。在给定的公司满意度和离职意向调查案例中,卡方检验显示两者间存在显著关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卡方检验(Chi-square test)是一种常用的统计方法,用于研究观察数据与期望数据之间的偏差程度。卡方检验适用于分类变量的统计分析,例如比较两组样本在不同因素下的分布情况、检验观察频数与理论频数是否存在显著差异等。

卡方检验的基本原理是比较观测频数与期望频数的差异,通过计算卡方值来判断这种差异是否显著。卡方值越大,说明观测值与期望值之间的差异越大,表明研究变量之间的相关性越强。通常将卡方值与自由度结合起来计算卡方分布的概率值(P值),如果P值小于预设的显著性水平(通常为0.05或0.01),则拒绝原假设,认为观察数据与期望数据之间的差异是显著的。

下面以一个实例来介绍卡方检验的具体应用过程。

案例背景: 一家公司进行了一次在线问卷调查,问卷包括“工作满意度”和“离职意向”两个问题。其中“工作满意度”分为“非常满意”、“比较满意”、“不那么满意”、和“不满意”四个等级,“离职意向”分为“有意愿离职”和“无意愿离职”两个等级。调查结果如下表所示:

有意愿离职无意愿离职总计
非常满意106070
比较满意30100130
不那么满意204060
不满意102030
总计70220290

问题及分析: 现在需要研究“工作满意度”与“离职意向”之间是否存在显著关联。

首先,我们需要计算每个等级中的期望频数。期望频数的计算公式为:期望频数=行总计×列总计/样本量。例如,在“非常满意”这一行中,“有意愿离职”的期望频数为70×70/290=17.07。

有意愿离职无意愿离职总计
非常满意17.0752.9370
比较满意35.5294.48130
不那么满意12.4147.5960
不满意4.9925.0130
总计70220290

接下来,我们计算卡方值。卡方值的计算公式为:卡方值=Σ(观测频数-期望频数)²/期望频数。例如,在“非常满意”这一行中,“有意愿离职”的卡方值为(10-17.07)²/17.07=2.56。

有意愿离职无意愿离职总计期望频数
非常满意2.560.112.6717.07
比较满意1.290.051.3435.52
不那么满意2.140.092.2312.41
不满意2.730.112.844.99
总计8.710.369.08

最后,我们需要计算P值,以判断研究变量之间是否存在显著关联。卡方分布的自由度为(行数-1)×(列数-1),在本例中自由度为3×1=3,所以我们需要查找3自由度的卡方分布表来获取P值。查表可知,当卡方值为8.71且自由度为3时,P值约为0.03。因为P值小于0.05,所以我们可以认为“工作满意度”与“离职意向”之间存在显著关联,即该公司员工的工作满意度会影响他们的离职意向。

总结一下,卡方检验是一种常用的统计方法,可以用于研究分类变量之间的关联性。在使用卡方检验时,需要先计算期望频数,然后计算卡方值,并结合自由度查找卡方分布表来计算P值,以判断观察数据与期望数据之间的偏差是否显著。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值