离散数学:库拉斯基定理

库拉斯基定理是离散数学中的一个重要定理,用于计算排列和组合问题。它涉及到将元素按特定条件分组后进行排列的计数问题,通过染色和排列组合的概念,避免重复计算。定理的应用包括人员划分和物品分配问题,提供了一种计算方案数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离散数学:库拉斯基定理

库拉斯基定理

库拉斯基定理是离散数学中的一个重要定理,该定理也称为两组合式的乘积公式,可用于计算排列和组合问题。

公式推导

考虑将 n n n 个元素分成 k k k 个集合 { S 1 , S 2 , . . . , S k } \{S_1,S_2,...,S_k\} {S1,S2,...,Sk},其中第 i i i 个集合包含 n i n_i ni 个元素,且 n 1 + n 2 + . . . + n k = n n_1+n_2+...+n_k=n n1+n2+...+nk=n

现在要将这 n n n 个元素排列起来,可以先从 S 1 S_1 S1 中选取一个元素,并在 S 1 S_1 S1 中重新排列,然后从 S 2 S_2 S2 中选取一个元素,并在 S 2 S_2 S2 中重新排列,以此类推。最后再将所有 k k k 个集合中的元素排列起来,得到 n ! n! n! 种排列方式。

但是,由于 S 1 S_1 S1 S 2 S_2 S2 . . . ... ... S k S_k Sk 是无序的,所以上述方法会重复计算很多情况。例如,当 n i = 2 n_i=2 ni=2 时, ( a , b , c , d ) (a,b,c,d) (a,b,c,d) 的一种排列方式为 ( a , b ) , ( c , d ) (a,b),(c,d) (a,b),(c,d) ( c , d ) , ( a , b ) (c,d),(a,b) (c,d),(a,b),这两种方式被分别算了两次,因为 S 1 S_1 S1 S 2 S_2 S2 可以交换。

为了避免重复计算,可以考虑对 { S 1 , S 2 , . . . , S k } \{S_1,S_2,...,S_k\} {S1,S2,...,Sk} 进行染色,使得同一颜色的集合中的元素是等价的,与其他颜色的集合中的元素是不等价的。设 c i c_i ci 表示 S i S_i Si 的颜色,则有 c 1 , c 2 , . . . , c k ∈ { 1 , 2 , . . . , k } c_1,c_2,...,c_k\in\{1,2,...,k\} c1,c2,...,ck{1,2,...,k}

考虑相同颜色的集合间的排列方式,即在 S 1 , S 2 , . . . , S k S_1,S_2,...,S_k S1,S2,...,Sk 中选取若干个集合进行排列,并在每个集合中重新排列。设 m 1 , m 2 , . . . , m k m_1,m_2,...,m_k m1,m2,...,mk 分别表示颜色为 1 , 2 , . . . , k 1,2,...,k 1,2,...,k 的集合数,且满足 m 1 + m 2 + . . . + m k = k m_1+m_2+...+m_k=k m1+m2+...+mk=k,则相同颜色的集合的排列方式有

n 1 ! ( n i 1 ) ! n 2 ! ( n i 2 ) ! . . . n k ! ( n i k ) ! \frac{n_1!}{(n_{i_1})!}\frac{n_2!}{(n_{i_2})!}...\frac{n_k!}{(n_{i_k})!} (ni1)!n1!(ni2)!n2!...(nik)!nk!

种,其中 i 1 , i 2 , . . . , i k i_1,i_2,...,i_k i1,i2,...,ik 分别为颜色为 1 , 2 , . . . , k 1,2,...,k 1,2,...,k 的集合在 { S 1 , S 2 , . . . , S k } \{S_1,S_2,...,S_k\} {S1,S2,...,Sk} 中的位置。

考虑不同颜色的集合间的排列方式,即在 k k k 个颜色中选取若干个颜色,然后在选出的颜色对应的集合中选取若干元素进行排列。设选出了 p p p 个不同颜色的集合,则它们在 { S 1 , S 2 , . . . , S k } \{S_1,S_2,...,S_k\} {S1,S2,...,Sk} 中的位置可以用一个长度为 k k k 的 0/1 数组 b b b 表示,即 b i = 1 b_i=1 bi=1 表示第 i i i 个集合被选中, b i = 0 b_i=0 bi=0 表示第 i i i 个集合未被选中。

由于选出了 p p p 个不同颜色的集合,并且它们的排列方式是不同的,所以有 C k p C_k^p Ckp 种选法。选出某个特定的颜色集合 S i S_i Si 后,将它其中的 n i n_i ni 个元素排列的种数为 n i ! n_i! ni! 种,因此,选出的所有颜色集合的排列方式为

∏ i = 1 k ( n i ) ! ( n i 1 ) ! ⋅ ( n i 2 ) ! ⋅ ⋅ ⋅ ( n i p i ) ! \prod_{i=1}^{k}\frac{(n_{i})!}{(n_{i_{1}})!\cdot(n_{i_{2}})!\cdot\cdot\cdot(n_{i_{p_i}})!} i=1k(ni1)!(ni2)!(nipi)!(ni)!

其中 p i p_i pi 表示与 i i i 同颜色的集合在选出的颜色集合中的个数, i 1 , i 2 , . . . , i p i i_{1},i_{2},...,i_{p_i} i1,i2,...,ipi 分别表示这 p i p_i pi 个集合在 { S 1 , S 2 , . . . , S k } \{S_1,S_2,...,S_k\} {S1,S2,...,Sk} 中的位置。

综上所述, n n n 个元素分成 k k k 个集合 { S 1 , S 2 , . . . , S k } \{S_1,S_2,...,S_k\} {S1,S2,...,Sk} 的排列方式数为

n ! ⋅ ∑ m 1 + m 2 + . . . + m k = k 1 m 1 ! ⋅ m 2 ! ⋅ ⋅ ⋅ m k ! ∏ i = 1 k 1 ( n i 1 ) ! ⋅ ( n i 2 ) ! ⋅ ⋅ ⋅ ( n i p i ) ! n!\cdot\sum_{m_1+m_2+...+m_k=k}\frac{1}{m_1!\cdot m_2! \cdot\cdot\cdot m_k!}\prod_{i=1}^{k}\frac{1}{(n_{i_{1}})! \cdot (n_{i_{2}})! \cdot\cdot\cdot (n_{i_{p_i}})!} n!m1+m2+...+mk=km1!m2!mk!1i=1k(ni1)!(ni2)!(nipi)!1

其中 p i p_i pi 表示与 i i i 同颜色的集合在染色后的集合中的个数, i 1 , i 2 , . . . , i p i i_{1},i_{2},...,i_{p_i} i1,i2,...,ipi 分别表示这 p i p_i pi 个集合在 { S 1 , S 2 , . . . , S k } \{S_1,S_2,...,S_k\} {S1,S2,...,Sk} 中的位置。此即库拉斯基定理。

库拉斯基定理的应用

例题:将 n n n 个人划分成若干组,每组至少有 m m m 个人,共有多少种划分方式?

n n n 个人分成 k k k 组,则有

n = ∑ i = 1 k n i ( k ≥ n i ≥ m ) n=\sum_{i=1}^k n_i(k\geq n_i\geq m) n=i=1kni(knim)

由库拉斯基定理可得,

n ! ⋅ ∑ k = m n 1 k ! ⋅ C n k ⋅ 1 ( k − m ) ! ( n − k ) ! n!\cdot\sum_{k=m}^{n}\frac{1}{k!}\cdot C_n^k\cdot \frac{1}{(k-m)!(n-k)!} n!k=mnk!1Cnk(km)!(nk)!1

即为所求的划分方式数。

例题:如何将 n n n 个物品放置到 k k k 个不同的盒子中,其中每个盒子大小有限?

假设第 i i i 个盒子的最大容量为 c i c_i ci,则该问题可以转化为在第 i i i 个盒子中放置 x i x_i xi 个物品的方案数问题,其中 x i ≥ 0 x_i \geq 0 xi0 ∑ i = 1 k x i = n \sum_{i=1}^{k}x_i=n i=1kxi=n x i ≤ c i x_{i}\leq c_{i} xici

A = { 1 , 2 , . . . , n } A=\{1,2,...,n\} A={1,2,...,n},对 A A A 中的每个元素进行染色,其中颜色 i i i 表示把该元素放到盒子 i i i 中。令 S i , j S_{i,j} Si,j 表示颜色为 i i i 的元素集合中选取 j j j 个元素排列的种数,则该问题的方案数为

∑ x 1 + x 2 + . . . + x k = n S 1 , x 1 ⋅ S 2 , x 2 ⋅ . . . ⋅ S k , x k \sum_{x_1+x_2+...+x_k=n}S_{1,x_1}\cdot S_{2,x_2}\cdot ...\cdot S_{k,x_k} x1+x2+...+xk=nS1,x1S2,x2...Sk,xk

由库拉斯基定理可得,

n ! ⋅ ∑ x 1 + x 2 + . . . + x k = n 1 x 1 ! x 2 ! . . . x k ! ∏ i = 1 k ( c i − x i ) ! ( c i − x i − n i ) ! n!\cdot\sum_{x_1+x_2+...+x_k=n}\frac{1}{x_1!x_2!...x_k!}\prod_{i=1}^{k}\frac{(c_i-x_i)!}{(c_i-x_i-n_{i})!} n!x1+x2+...+xk=nx1!x2!...xk!1i=1k(cixini)!(cixi)!

即为所求的方案数。

总结

库拉斯基定理是离散数学中一个非常重要的定理,可用于计算排列和组合问题。通过本文的阐述,相信读者已经对库拉斯基定理有了深入的理解,并可以灵活运用该定理解决不同的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值