8.7 Kuratowski定理

  这个定理的发现者是波兰数学家库拉托夫斯基,他的资料我就不多介绍了。简单贴张照片吧,头发还是蛮多的。
在这里插入图片描述
  要了解Kuratowski定理,首先先要了解Kuratowski第一图。这个图就是5个节点组成的完全图,符号为 K 5 K_5 K5
在这里插入图片描述
  有了第一图,那肯定就第二图,要不然叫第一没什么意思。Kuratowski第二图就是完全二分图 K 3 , 3 K_{3,3} K3,3。下图右边是 K 3 , 3 K_{3,3} K3,3的同构isomorphic形式:
在这里插入图片描述
  好了,了解这个概念后,再讲下图的细分Subdivision。图的细分就是边上再加一个点,把一条边分为两条边,叫做细分。我举个例子:
在这里插入图片描述
  然后在底部加上一点,将边分为了两条边:
在这里插入图片描述
  这样就完成了图的细分。
  讲了这么多,Kuratowski定理的内容是:一个图可平面化,当且仅当其不含有任何 k 5 k_5 k5 k 3 , 3 k_{3,3} k3,3的细分。
  Kuratowski定理的证明有几个版本,1930年,Kuratowski本人发明这个定理,给出了一个证明。1954年Schuster和Dirac又给出了一个更简短的证明。1981年,Thomassen给出了更好的证明,下面我就翻译翻译Thomassen的证明。
  先证明必要性,设G是可平面化的,那么它的子图要么既不是 K 5 K_5 K5,也不是 k 3 , 3 k_{3,3} k3,3,也不包含 K 5 K_5 K5 k 3 , 3 k_{3,3} k3,3的细分。这个没必要证明,因为 K 5 K_5 K5 k 3 , 3 k_{3,3} k3,3都不可平面化,所以子图肯定不包含。
  难点在于充分性的证明。在证明之前,我先说下k通图k-connected graph的概念。之前我写的证明惠特尼不等式的博文中讲过了点连通性的概念。k连通图就是点连通性 κ ( G ) \kappa(G) κ(G)为k的图。
  只需要证明3连通图,要么包含 K 5 K_5 K5 k 3 , 3 k_{3,3} k3,3的细分,要么可平面化。然后就可以以此类推到n连通图。那就开始从3连通图开始证明吧。
  因为G是3连通图,所以G一定有4个以上的点。从点数n=4开始,四个点的三连通图,只有完全图 K 4 K_4 K4,这个或许难以理解,我解释一下。4个点的图,删除三个点不就只剩下一个点了嘛,那也没增加组件的数量啊。因为完全图无论怎么删除点都不会增加新的组件,所以规定完全图的点连通度为 n − 1 n-1 n1 K 4 K_4 K4是可平面化的,如下图:
在这里插入图片描述
  再看看 n > 4 n\gt4 n>4的情况,因为图G是三通的,所以G缩边Contraction之后还是三通的。缩边的符号是 G ∣ e G\vert e Ge。G是图,e是边,再定义 H = G ∣ e H=G\vert e H=Ge,e的两端记为x和y,把e缩边后得到的点为z。因为缩一个边就少一个点导致不能无限缩边,所以我们在 n > 4 n>4 n>4时才使用缩边操作。以下是缩边示意图(图片来自印度理工院Graph Theory with Algorithms and its Applications):
在这里插入图片描述
  然后再删除z的邻居,直到删到图为可平面化为止,这时候得到一个包含z的区域,C记为这个区域的边界环。下图就是C(图片来自印度理工学院Graph Theory with Algorithms and its Applications):
在这里插入图片描述
  我们再重新调整x和y的位置。x放在z的位置上,y放在这个环内的任意位置。注意,我们只是调整了x和y的位置,没有缩边!
  第一种场景,y的所有邻居都在C的一个段segment上,直白地讲,y的所有邻居在同一个半环。这个时候,y可以和x没有共同邻居,也可以共享一个邻居,也可以共享两个邻居。如下图,图是可平面化图(图片来自印度理工学院Graph Theory with Algorithms and its Applications):
在这里插入图片描述
  第二种场景,不能平面化,x和y共享了三个邻居,也就是两个邻居在环C的这半部分,另一个邻居在环的那半部分且与x共享。这个时候组成了 K 5 K_5 K5的细分,如下图(图片来自印度理工学院Graph Theory with Algorithms and its Applications):
在这里插入图片描述
  第三种场景,没有共享邻居的,不能平面化,y的两个邻居,一个在环的这边,一个在环的那边,这个时候组成了 K 3 , 3 K_{3,3} K3,3的细分,如下图中u在这个半圆,v在另一个半圆(图片来自印度理工学院Graph Theory with Algorithms and its Applications):
在这里插入图片描述
  这三种场景互斥并且包含了所有情况。第一种情况是y的所有邻居在同一侧,第二种和第三种都是邻居不在同一侧(专业术语叫同一段)。第二种场景是不在同一侧的y的邻居中有x的邻居,而第三种情况是另一侧没有和x共享邻居。这三种场景和三通其实没啥关系,所以对于n通图都是可以通用的。Q.E.D.(证明完毕)

  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值