阻尼系数学习笔记
阻尼系数是振动系统中描述阻尼性质的一个参数,是指振幅随时间指数衰减的速率。阻尼分为欠阻尼、临界阻尼和过阻尼三类。在机械振动中,气动摩擦阻尼、液体阻尼、辐射阻尼等因素均可引起振动阻尼。
阻尼比
阻尼比是阻尼系数与临界阻尼系数之比,通常用符号
ζ
\zeta
ζ 表示。
ζ
=
c
c
c
r
\zeta = \frac{c}{c_{cr}}
ζ=ccrc
其中 c c c 是阻尼系数, c c r c_{cr} ccr 是临界阻尼系数,当阻尼比 ζ < 1 \zeta < 1 ζ<1 时为欠阻尼, ζ = 1 \zeta = 1 ζ=1 时为临界阻尼, ζ > 1 \zeta > 1 ζ>1 时为过阻尼。
振动方程
在一般情况下,振动系统的运动方程可以写成如下形式:
m
x
¨
+
c
x
˙
+
k
x
=
F
(
t
)
m\ddot{x} + c\dot{x} + kx = F(t)
mx¨+cx˙+kx=F(t)
其中 m m m 是质量, c c c 是阻尼系数, k k k 是弹性系数, F ( t ) F(t) F(t) 是外部作用力。
当外部作用力为
0
0
0 时,即
F
(
t
)
=
0
F(t) = 0
F(t)=0,则运动方程变为:
m
x
¨
+
c
x
˙
+
k
x
=
0
m\ddot{x} + c\dot{x} + kx = 0
mx¨+cx˙+kx=0
考虑解这个方程,可以先假设解的形式为
x
=
e
r
t
x = e^{rt}
x=ert,代入方程可得:
m
r
2
+
c
r
+
k
=
0
mr^2 + cr + k = 0
mr2+cr+k=0
根据求根公式可得:
r
1
,
2
=
−
c
±
c
2
−
4
m
k
2
m
r_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m}
r1,2=2m−c±c2−4mk
可以分为几种情况:
当
c
2
<
4
m
k
c^2 < 4mk
c2<4mk 时,方程有两个不相等的虚根,此时系统为欠阻尼振动。
当
c
2
>
4
m
k
c^2 > 4mk
c2>4mk 时,方程有两个不相等的实根,此时系统为过阻尼振动。
当
c
2
=
4
m
k
c^2 = 4mk
c2=4mk 时,方程有一个重根,此时系统为临界阻尼振动。
阻尼比与振动图像
下面是不同阻尼比下的振动图像。
欠阻尼振动
在欠阻尼的情况下,振动呈现周期性的振荡,并以指数函数的速率逐渐衰减。
import numpy as np
import matplotlib.pyplot as plt
t = np.linspace(0, 50, 500)
x = np.exp(-0.2*t) * np.sin(2*np.pi*t)
plt.plot(t, x)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Underdamped Vibration')
plt.show()
过阻尼振动
过阻尼的情况下,振动呈现指数函数的速率逐渐衰减,但没有周期性振荡。
t = np.linspace(0, 10, 500)
x = (1 - np.exp(-2*t)) * np.exp(-5*t)
plt.plot(t, x)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Overdamped Vibration')
plt.show()
临界阻尼振动
临界阻尼的情况下,振动速率非常缓慢,但不会产生周期性振荡和指数函数的快速衰减。
t = np.linspace(0, 5, 500)
x = np.exp(-5*t) * (1 + 5*t)
plt.plot(t, x)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Critical Damping Vibration')
plt.show()
总结
阻尼系数是振动系统中描述阻尼性质的一个参数,是指振幅随时间指数衰减的速率。阻尼分为欠阻尼、临界阻尼和过阻尼三类。在求解振动方程时,根据 c 2 c^2 c2 与 4 m k 4mk 4mk 的大小关系可判断阻尼的类型。在不同阻尼比下,振动图像表现出不同的特征,如周期性振荡、指数函数衰减等。