阻尼系数学习笔记

阻尼系数学习笔记

阻尼系数是振动系统中描述阻尼性质的一个参数,是指振幅随时间指数衰减的速率。阻尼分为欠阻尼、临界阻尼和过阻尼三类。在机械振动中,气动摩擦阻尼、液体阻尼、辐射阻尼等因素均可引起振动阻尼。

阻尼比

阻尼比是阻尼系数与临界阻尼系数之比,通常用符号 ζ \zeta ζ 表示。
ζ = c c c r \zeta = \frac{c}{c_{cr}} ζ=ccrc

其中 c c c 是阻尼系数, c c r c_{cr} ccr 是临界阻尼系数,当阻尼比 ζ < 1 \zeta < 1 ζ<1 时为欠阻尼, ζ = 1 \zeta = 1 ζ=1 时为临界阻尼, ζ > 1 \zeta > 1 ζ>1 时为过阻尼。

振动方程

在一般情况下,振动系统的运动方程可以写成如下形式:
m x ¨ + c x ˙ + k x = F ( t ) m\ddot{x} + c\dot{x} + kx = F(t) mx¨+cx˙+kx=F(t)

其中 m m m 是质量, c c c 是阻尼系数, k k k 是弹性系数, F ( t ) F(t) F(t) 是外部作用力。

当外部作用力为 0 0 0 时,即 F ( t ) = 0 F(t) = 0 F(t)=0,则运动方程变为:
m x ¨ + c x ˙ + k x = 0 m\ddot{x} + c\dot{x} + kx = 0 mx¨+cx˙+kx=0

考虑解这个方程,可以先假设解的形式为 x = e r t x = e^{rt} x=ert,代入方程可得:
m r 2 + c r + k = 0 mr^2 + cr + k = 0 mr2+cr+k=0

根据求根公式可得:
r 1 , 2 = − c ± c 2 − 4 m k 2 m r_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m} r1,2=2mc±c24mk

可以分为几种情况:

c 2 < 4 m k c^2 < 4mk c2<4mk 时,方程有两个不相等的虚根,此时系统为欠阻尼振动。
c 2 > 4 m k c^2 > 4mk c2>4mk 时,方程有两个不相等的实根,此时系统为过阻尼振动。
c 2 = 4 m k c^2 = 4mk c2=4mk 时,方程有一个重根,此时系统为临界阻尼振动。

阻尼比与振动图像

下面是不同阻尼比下的振动图像。

欠阻尼振动

在欠阻尼的情况下,振动呈现周期性的振荡,并以指数函数的速率逐渐衰减。

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, 50, 500)
x = np.exp(-0.2*t) * np.sin(2*np.pi*t)

plt.plot(t, x)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Underdamped Vibration')
plt.show()

过阻尼振动

过阻尼的情况下,振动呈现指数函数的速率逐渐衰减,但没有周期性振荡。

t = np.linspace(0, 10, 500)
x = (1 - np.exp(-2*t)) * np.exp(-5*t)

plt.plot(t, x)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Overdamped Vibration')
plt.show()

临界阻尼振动

临界阻尼的情况下,振动速率非常缓慢,但不会产生周期性振荡和指数函数的快速衰减。

t = np.linspace(0, 5, 500)
x = np.exp(-5*t) * (1 + 5*t)

plt.plot(t, x)
plt.xlabel('Time')
plt.ylabel('Displacement')
plt.title('Critical Damping Vibration')
plt.show()

总结

阻尼系数是振动系统中描述阻尼性质的一个参数,是指振幅随时间指数衰减的速率。阻尼分为欠阻尼、临界阻尼和过阻尼三类。在求解振动方程时,根据 c 2 c^2 c2 4 m k 4mk 4mk 的大小关系可判断阻尼的类型。在不同阻尼比下,振动图像表现出不同的特征,如周期性振荡、指数函数衰减等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值